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C. Scheme #2: Fuzzy Extractor
Below we present the Fuzzy Extractor version of algorithms
(E1, R1), in the POK scenario.
Algorithm E2: enrollment for POK

1) Measure the POK output X ∈ {0, 1}n.
2) Generate random A. Compute Q = g(X,A).
3) Draw S ∈ {0, 1}k uniformly at random.
4) Compute helper data W = X ⊕ Enc(S).
5) For j ∈ {1, . . . ,m− 1} do:

a) Draw X fake
j ∈ {0, 1}n from the distribu-

tion ρ.
b) Uniformly draw Sfake

j ∈ {0, 1}k.
c) Compute W fake

j = X fake
j ⊕ Enc(Sfake

j ).
6) Uniformly draw Z ∈ {1, . . . ,m}.
7) Construct a vector

Ω = (W fake
1 , · · · , W fake

z−1 , W, W fake
z , · · · , W fake

m−1).
8) Construct a vector Φ = (Φi)m

i=1 with Φi =
Syn(Ωi).

9) Compute G = f(Φ||Ω||A||X).
10) Store public data P = (Φ,Ω, A,G).

Algorithm R2: efficient reconstruction of POK
1) Read P ′ = (Φ′,Ω′, A′, G′).
2) Measure the POK output X ′.
3) Compute F ′ = Syn(X ′).
4) For j ∈ {1, . . . ,m} do: dj = dHamm(F ′,Φ′

j).
5) Make a permutation λ that sorts (dj)m

j=1 in as-
cending order.

6) Let Ω̃ = λ(Ω′).
7) Let j = 0.
8) Increase j. If j = m + 1 then abort with failure.
9) Try to compute Sj = Dec(X ′ ⊕ Ω̃j).

If the decoding fails then goto 8.
10) X̂j = Ω̃j ⊕ Enc(Sj).
11) If G′ $= f(Φ′||Ω′||A′||X̂j) then goto 8.
12) Q̂ = g(X̂j , A′).

The only difference with the biometrics scenario (E1,R1) is
the use of the auxiliary randomness A and the computation
of Q and Q̂.

V. ANALYSIS OF THE SCOM
We investigate how much information about X is revealed
to the adversary by showing him Ω. In principle we should
be looking at the leakage from the whole public data P , but
there one hits a snag: information-theoretically there is no such
thing as a one-way function. The hash G hides its input in
practice, but information-theoretically speaking G reveals Z to
the adversary. The leakage from Ω is a better way to represent
the adversary’s actual workload.
In the biometrics scenario, the relevant quantity to look at is
Shannon entropy. (One might argue that min-entropy is more
important, but since we do not have the stringent requirements
that cryptographic keys have to satisfy2 , we will stick to

2Remember that most biometrics cannot be kept secret, since it is possible
to measure them surreptitiously.

Shannon entropy.) The relevant quantity in the POK scenario
is the Rényi entropy H2, which features in the ε-extractable
randomness (11). We show results for both scenarios.
In Section V-C we also briefly look at memory requirements.

A. Leakage in terms of Shannon entropy

We first present two lemmas that allow us to relate the leakage
I(X;Ω) to the adversary’s ignorance about the location Z.
Then we present a result for small m and for large m.
Lemma 3: The adversary’s ignorance about X given Ω can be
written as

H(X|Ω) = H(X|W ) + I(Z;XΩ). (13)

Proof: We write H(X|ΩZ) in two ways: as H(X|W ) and as
H(XZ|Ω) − H(Z|Ω) = H(XZ|Ω) − H(Z) = H(X|Ω) +
H(Z|XΩ) − H(Z). Equating the two different expressions
yields (13). !
Lemma 4: Let t(x,ω) denote the number of entries in ω
that are consistent with x, i.e. t(x,ω) = |{j : Syn(ωj) =
Syn(x)}|. Then

H(X|Ω) = H(X|W ) + log m− Exω log t(x,ω). (14)

Proof: We write I(Z;XΩ) = H(Z) − H(Z|XΩ) = log m −
H(Z|XΩ). For a given (x,ω) there are t(x,ω) possible ways
to place w in ω. They are all equiprobable from the point
of view of the adversary. Hence H(Z|X = x,Ω = ω) =
log t(x,ω). It follows that H(Z|XΩ) = Exω log t(x,ω).
Finally we substitute I(Z;XΩ) = log m − Exω log t(x,ω)
into Lemma 3. !
Theorem 1: The conditional entropy H(X|Ω) can be bounded
from below as

H(X|Ω) ≥ H(X|W ) + log m− m− 1
ln 2

ExqSyn(x). (15)

Proof: We write t(x,ω) = 1+u(x,ω) and use ln(1+u) ≤ u.
This gives Exω log t(x,ω) ≤ 1

ln 2Exωu(x,ω). For given x,
the u is binomial-distributed with parameters m − 1 and
qSyn(x). (See Section II for the notation q.) Thus we have
Exωu(x,ω) = Ex[(m− 1)qSyn(x)]. !
At first sight (15) might seem to contradict the well known
principle ‘conditioning reduces Shannon entropy’. However, it
should be borne in mind that Ω is not just W plus decoys;
Ω results from a Z-dependent function applied to W and the
decoys. This function reduces the leakage from W .
The probability qSyn(x) is typically of the order 1/2n−k if X
is not too strangely distributed. Hence the last term in (15) is
a small correction term if m < 2n−k. Eq. (15) confirms the
intuitive idea that the attacker’s effort increases by a factor
≈ m/2. Note that the bound in Theorem 1 is far from tight
when m is large. For large m we have the following result.
Theorem 2: The conditional entropy H(X|Ω) can be bounded
from below as

H(X|Ω) ≥ H(X)− 1
m

· 2n−k − 1
ln 2

. (16)

Proof: As in the proof of Theorem 1, we write t = 1 + u.
Furthermore we split u into its expectation value (at fixed x)
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