The spammed Code Offset Method

Boris Škorić
Niels de Vreede

TU/e

PUFFIN workshop
3 Nov. 2013

eprint.iacr.org/2013/527

Outline

- Helper data schemes
- privacy-preserving biometric databases
- Physically Obfuscated Keys
- The Code Offset Method
- Adding fake enrollment data
- while retaining efficient reconstruction
- LDPC codes, syndromes, ...
- Analysis

Scenario 1: privacy-preserving biometrics DB

Aim: store only the hash of a user's fingerprint/iris/...

Problem: noise

Solution: helper data scheme (Secure Sketch)

Desired properties:

- High prob. of correct reconstruction.
- W does not leak much about X.

Scenario 2: Physically Obfuscated Key

Aim: Alternative technology for read-proof key storage. Obtain key from measurement on complex physical system ("PUF").
Problem: noise
Solution: helper data scheme

Figure of merit: $\quad \mathrm{H}_{2}(\mathrm{X} \mid \mathrm{W})$

Intermezzo: Error-correcting codes

k-bit message μ.
n-bit codeword C_{μ}.
n-bit noise pattern e.

$$
C_{\mu} H^{\top}=\underline{0}
$$

$\mathrm{z}=\mathrm{C}_{\mu}+\mathrm{e}$
$\operatorname{Syndrome} \operatorname{Syn}(z)=\operatorname{Syn}\left(C_{\mu}\right)+\operatorname{Syn}(e)=\operatorname{Syn}(e)$

"Low-Density Parity Check" matrix [Gallager 1960]

Code Offset Method

"The mother of all Secure Sketches"

- Source $X \in\{0,1\}^{n}$.
- Uniformly random $R \in\{0,1\}^{k}$.
- Binary linear error correcting code (Enc, Dec).
Message size k; codeword size n.

Code Offset Method: analysis

How good is this?

If X is uniform:

- $H(R \mid W)=H(R)$; no leakage about R !
- $H(X \mid W)=H(R)=k$

W leaks n-k bits about X

If X is not uniform

- W leaks about R
- W still reveals Syn(X)

Can we do better?

Fake helper data

Idea: hide W in lots of fake helper data (with same distribution)

Biometrics database, entry for one user:

Legitimate party:

- Has X'
- Reconstruction by brute force: Try all entries

Attacker:

- Does not have X^{\prime}
- Brute force attack
- effort multiplied by $m / 2 \Longrightarrow \log (\mathrm{~m} / 2)$ bits of security gained

More efficient scheme

- Use LDPC code
- parity check matrix is sparse
- $X^{\prime} \approx X$ implies $\operatorname{Syn}\left(X^{\prime}\right) \approx \operatorname{Syn}(X)$
- Store $\operatorname{Syn}(X)=\operatorname{Syn}(W)$ and all $\operatorname{Syn}\left(W^{\text {fake }}\right)$
- can be computed from W and $\mathrm{W}^{\text {fake }}$
- reveals nothing new
- Code Offset Method possible with only syndrome

Fast reconstruction: • Compute Syn(X^{\prime})

- Prioritize entries with $\operatorname{Syn}\left(W_{i}\right) \approx \operatorname{Syn}(X)$.

Security analysis

Without spam: $H(X \mid W)=H(\operatorname{Syn} X)$
With spam: $\mathrm{H}(X \mid \boldsymbol{\Omega}) \geq \mathrm{H}(X \mid W)+\log m-\frac{m-1}{\ln 2} \mathbb{E}_{x} q_{\operatorname{Syn}(x)}$
Ω : the helper data list
$\begin{aligned} & \mathrm{H}(X \mid \boldsymbol{\Omega}) \geq \\ & \text { Typically, } \frac{m-1}{\ln 2} \mathbb{E}_{x} q_{\mathrm{Syn}(x)} \text { is of order } \frac{1}{2^{n-k}} \cdot \frac{2^{n-k}-1}{\ln 2}\end{aligned}$
$m \rightarrow 2^{n-k}$: Leakage gets close to zero.

The size of the table (assuming LDPC)

biometrics (1 user)				phys. obfuscated key		
		$\mathrm{k}=64$			$\mathrm{k}=128$	
\#err	n	$\log \mathrm{m}$	Mem	n	$\log \mathrm{m}$	Mem
1	72	4	16 B	138	5	40 B
		8	0.3 KB		10	1.2 KB
2	78	7	0.2 KB	146	9	1.1 KB
		14	29 KB		18	0.6 MB
3	85	10.5	3.8 KB	154	13	26 KB
		21	5.5 MB		26	0.2 GB

- n values are approximate
- Listed values for $\log m$: (n-k)/2 and n-k
- Choose m that fits in memory \Rightarrow sec. gain $\log (m)-1$ bits

Summary

We added a new "knob" to the Code Offset Method

- better use of source entropy trade-off
- price: size of enrollment data
- security analysis: Shannon entropy
- Rényi entropy [not shown]
- interesting for low source entropy

Work in progress:

- explicitly choose LDPC codes
- generate the table (with PRNG)

- security \leftrightarrow memory tradeoff becomes security \leftrightarrow work tradeoff

Acknowledgements

- Ruud Pellikaan
- Ludo Tolhuizen

