How to recognize a bad PUF

Vincent van der Leest, Intrinsic-ID

Berlin, November 3rd 2013

PUFFIN workshop

Presentation Outline

Introduction

PUFs and performed tests

Test results and analysis

Conclusions

Introduction

- During PUFFIN project measurements have been performed on many potential PUF instantiations
- PUFs are based on SRAM from different COTS devices
- Limited number of devices measured per PUF type
- Tests performed under limited different circumstances
- Data sets only allows for preliminary analysis

How can we make a first distinction between "good" and "bad" PUFs based on this limited amount of data?

PUFs and performed tests

Analysed devices:

- Tablets:
 - Ainol Novo 7
 - Pandaboard
- Microcontrollers:
 - Texas Instruments MSP430F5308
 - Microchip PIC16F1825
 - ST STM32F100R8/B
 - Atmel ATMega328p
- GPU: NVIDIA GeForce GTX 295 graphics cards

PUFs and performed tests

Performed tests:

- Repeated Start-up Test
 - Measure PUFs multiple times under stable conditions
- Between-class Hamming Distance Test
 - Compare enrollment measurements from different devices
- Hamming Weight Test
 - Count number of 0's and 1's in PUF measurements
- Temperature Cycle Test
 - Measure PUFs multiple times at varying ambient temperatures

Repeated Start-up Test

Between-Class Hamming Distance Test

Between-Class Hamming Distance Test

Hamming Weight Test

Hamming Weight Test

Examples of start-up patterns

Good: Ainol Novo 7 tablet

Bad: PIC16F1825 microcontroller

Examples of start-up patterns

Enrolled bits of device 1 [antilles0_SRAM10]

Reasonable: NVIDIA GeForce GTX 295

Good: ST STM32F100R8

Temperature Cycle Test

Good: TI MSP430F5308

Hamming Weight Test: Biased

Туре	Device	Quantity	RST	BCHDT	HWT	Remark
Tablets	Ainol Novo 7	7	Pass	Pass	Pass	Good PUF!
	Pandaboard	5	Pass	Pass	Pass	Good PUF!
Micro- controllers	TI MSP430F5308	15	Pass	(Weak) Pass	(Weak) Pass	Biased PUF
	PIC16F1825	16	Pass	Fail	Fail	Bad PUF!
	ST STM32F- 100R8/B	11	Pass	(Weak) Pass	Pass	Correlation b/t devices
	Atmel ATMega328p	16	Pass	(Weak) Pass	(Weak) Pass	Biased PUF
GPU	NVIDIA GTX 295	4	Pass	(Weak) Pass	(Weak) Pass	Biased PUF

Conclusions

Conclusions:

- PUFs have been found in (SRAMs of) many different COTS devices
- Most measured SRAMs show promising results and could be suitable for PUF implementations
- Amount of pre-processing required will vary between PUFs
- Note: Temperature Cycle Test only performed on microcontrollers, since other devices will not survive extreme temperatures
- PIC16F1825 only device where SRAM definitely not usable as PUF
- This is due to severe (bytewise) biasing of the PUF responses, which is most likely caused by issues with power-up circuitry of SRAM

