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Abstract

This document contains an overview of the work and results from Work Package 2 (WP2)
of the PUFFIN project. The work in WP2 can be divided into two main parts: analysis of
PUF measurements (from WP1) and development of new methodologies for evaluating PUF
behaviour. This document describes what has been achieved in both of these areas during
the second phase (months 19-36) of the PUFFIN project. The results of the work performed
in WP2 serve as input for WP3, since WP2 shows which PUFs (and therefore which devices)
have the required properties to implement certain specific use cases.
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Chapter 1

Introduction

Work Package 2 (WP2) of the PUFFIN project focusses on analysis and qualification of the
PUF's that have been found in WP1. Based on this goal, WP2 is divided into two main parts:

e The analysis of PUF measurements (from WP1), and
e the development of new methodologies for evaluating PUF behaviour.

This document describes what has been achieved in both of these areas during the second
phase (months 19-36) of the PUFFIN project. The results of the work performed in WP2
serve as input for WP3, since WP2 shows which PUFs (and therefore which platforms) have
the required properties to implement specific use cases from WP3.

Chapter 2 of this deliverable provides an overview of the tests that have been performed
on the different PUF measurements from WP1. These tests have been used as a preliminary
investigation into the suitability of the different PUFs from commercially available devices
for actual use in PUF implementations. Due to the limited number of devices measured (and
the limited set of environmental tests performed), the overview presented in this section does
not offer a thorough qualification of the measured PUFs. However, the results can already be
used to distinguish between platforms that will not be suitable for implementing PUF-based
security primitives and those that do seem promising.

Chapter 3 describes which new methodologies for evaluating PUF behaviour have been
developed in the PUFFIN project. In the first period two methodologies were developed,
which each focussed on one of the two basic properties of PUFs: reliability and uniqueness.
These methodologies have already been reported in Deliverable D2.1. During the second phase
of the PUFFIN project a new methodology has been developed for evaluating the trends for
both reliability and uniqueness of SRAM PUFs during the lifetime of devices. Using this
method it is possible to predict how a PUF will behave over time and what is required to
make sure that the Fuzzy Extractor will be able to reconstruct the required enrollment pattern
during the entire lifetime of an electronic device.

This new methodology is described in detail in a scientific publications that has been
attached to this deliverable as an appendix. An additional second appendix has been added
containing a paper that has been submitted by members of the PUFFIN project to the Journal
of Cryptographic Engineering. This paper contains an overview of the work that has been
performed in the project on analysing PUF data. Therefore this paper is the most important
dissemination of the results from WP2 to the scientific community. The paper is currently
still under review by the journal.
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Chapter 2

Preliminary Analysis of PUFs

2.1 Introduction

During the PUFFIN project WP2 has received PUF measurements from WP1 for analysis. All
measured PUF behaviour has been derived from SRAM memories of commercially available
devices. A term generally used for these devices is Commercial Off-The-Shelve (COTS)
devices. SRAM that has been analysed in the PUFFIN project (both in the first and second
project phase) originates from the following platforms:

e Ainol Novo 7 tablets,

e Texas Instruments MSP430F5308 microcontrollers,
e Microchip PIC16F1825 microcontrollers,

e ST STM32F100R8 microcontrollers,

e ST STM32F100RB microcontrollers,

e Atmel ATmega328p microcontrollers,

e NVIDIA GeForce GTX 295 graphics card,

e Pandaboards (computer development platform containing either Texas Instruments
OMAP4430 or 4460, see www.pandaboard.org for more information),

o Texas Instruments Stellaris LM4F120H5QR, microcontrollers,
e Texas Instruments AM3358 microcontrollers (on BeagleBone boards), and

e Atmel ATmegal280 microcontrollers (on Arduino Mega boards).

Deliverables D1.1 and D1.2 of the PUFFIN project explain which SRAM memories of these
platforms have been used for these measurements and how data has been extracted.

Note: Part of the measurement analysis on these devices has already been reported in
Deliverable D2.1. This document reports the analyses that have been performed in the
second phase of the PUFFIN project. All results (both from project phase 1 and 2) will be
summarized in the conclusions of this chapter.


www.pandaboard.org
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2.2 Test Descriptions

The following tests have been performed to evaluate reliability and uniqueness of the PUFs
from devices of the different platforms:

e Repeated Start-up Test (RST),

e Temperature Cycle Test (TCT),

Between-class Hamming Distance Test (BCHDT), and

Hamming Weight Test (HWT).

e Min-Entropy Test (MET)

The following sections provide a description for each of these tests. The Temperature Cycle
Test has not been performed on all platforms, because some platforms (tablets, GPUs, and
certain development boards) cannot be measured under extreme temperature conditions.
Some components of these platforms will not survive extreme heat or cold.

2.2.1 Repeated Start-up Test

This basic test measures the noise characteristics of the PUF candidates by comparing several
PUF responses within-class, i.e., of the same device. Each device of a platform containing
a PUF (found in WP1) is measured repeatedly. The measurements are performed “on the
desk” under room temperature and uncontrolled humidity conditions. The PUF response of
each measurement is stored on a hard drive and later analysed by software.

One PUF measurement (usually the first one) of each device is considered as enrolment
measurement. A Matlab script is used to compare (fractional) Hamming distances between
the enrolment measurement and all other PUF responses of the device. The Hamming dis-
tances between the PUF measurements must be small in order to identify a device with high
reliability.

2.2.2 Temperature Cycle Test

This within-class test measures noise characteristics and thus the reliability of the PUFs for
a specific platform under different ambient temperatures. The PUF response of a device is
measured repeatedly under well defined ambient conditions and each measurement is stored
on a hard disk and finally analysed by software. Measurement files are sorted into folders
according to the conditions at which they were taken (e.g., folder names ‘Temp-30’, ‘Temp25’,
‘Temp90’ indicate that measurements stored in these folders were taken at —30°C, +25°C
and +90°C temperature respectively).

An enrolment measurement of each device is taken at +25°C. A Matlab script is used
to compare the (fractional) Hamming distances between the enrolment measurement and the
other measured PUF responses of the device. A PUF is considered reliable if the Hamming
distances to the enrolment measurement are small under all ambient conditions.
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2.2.3 Between-Class Hamming Distance Test

This test investigates the uniqueness of PUF responses by comparing PUF enrolment mea-
surements (from the Repeated Start-up Test) between-class, i.e., between several devices of
the same platform.

A Matlab script is used to compare the (fractional) Hamming distances between the
enrolment measurements of the devices. Devices can be uniquely identified if there is some or
no correlation between PUFs from different devices, i.e., if the fractional Hamming distances
between the enrolment measurements have a Gaussian distribution with a mean value in the
order of 50%. The closer this value is to 50%, the smaller the correlation between devices is.

2.2.4 Hamming Weight Test

This test is performed using either the measurements from the Repeated Start-up Test or
from the Temperature Cycle Test. It investigates whether PUF responses have a bias to
either 0 or 1 during start-up (possibly at different temperatures).

A Matlab script is used to calculate the (fractional) Hamming weight of all measured PUF
responses of a device. The Hamming weight is an indication for bias in the PUF responses:
Non-biased PUF responses have an even distribution in zero and non-zero bits. Therefore,
the fractional Hamming weight of the measurements should be close to 50%, indicating that
about half the bits of the response are 0 and the other half are 1.

2.2.5 Min-Entropy Test

This test is performed using either the measurements from the Repeated Start-up Test or from
the Temperature Cycle Test. It is an additional test for evaluating the noise characteristics
of the PUF candidates.

This test has been used to evaluate whether measured memories are suitable for creating a
high quality seed from the noise present on the SRAM measurements for the Random Number
Generator that has been developed in WP3. For this purpose, the amount of entropy present
in the noise of SRAM start-up patterns should be determined. The method used here is based
on the NIST specification SP800-90A (Recommendation for Random Number Generation
Using Deterministic Random Bit Generators) that defines min-entropy as the worst-case
(i.e., the greatest lower bound) measure of uncertainty for a random variable.

For a binary source, min-entropy is defined as:

Hmin = _10g2(max(p07pl))¢ (21)

where pg and p; are the probabilities of 0 and 1 occurring. Assuming that all bits from the
SRAM start-up pattern are independent, each bit i can be viewed as an individual binary
source. For each of these sources the probabilities pf) and p! of powering up in state 0 or
1 can be estimated, by repeatedly measuring the power-up values of the SRAM. In case m
subsequent measurements are performed, pf) denotes the number of occurrences of a zero,
divided by m and pﬁ =1- pé. For n independent sources (where n is the length of the
start-up pattern), we have:

n

Hyin = ) —logy(max(pp, p})))- (2.2)
i=1
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Hence, under the assumption that all bits are independent, the min-entropy of each individual
SRAM cell can be summed to derive the min-entropy of the entire SRAM. To represent this
min-entropy of the entire SRAM, we choose to display it as a percentage of the total size of
the SRAM by using the following formula:

" 100%

Hmin = Z - 10g2(max(p67pi))) X n : (23)
i=1

A Matlab script is used to calculate pj and p! for each individual SRAM cell, based on
all available measurements for a specific device (within-class) at a certain temperature. The
more measurements of a single device are available at a temperature, the more accurate the
estimate of the probabilities will be and therefore the more accurate the min-entropy estimate
will be.
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2.3 Test Results

This section contains the results for the PUF responses that have been acquired and analysed
in the second phase of the PUFFIN project. This section contains four subsection with
different kinds of data and analysis results. These subsections comprise of the following:

e The first subsection contains new Temperature Cycle Tests that have been performed
on platforms that were already measured at room temperature during the first project
phase. These platforms are the Microchip PIC16F1825, the ST STM32F100RS8, and
the Atmel ATmega328p.

e The second subsection also describes new measurements on a platform from the first
project period, in this case the NVIDIA GeForce GTX 295 graphics card. For this
device more data has been extracted during the second project phase. The size of the
SRAMs measured has increased (to almost 16KB) and the number of SRAMs measured
has increased to 510 individual SRAMs.

e In the third subsection analysis has been performed on three new platforms, which were
measured during the second project period: the Texas Instruments Stellaris LM4F120H5QR,
the BeagleBone board with a Texas Instruments AM3358 microcontroller, and the Ar-
duino Mega board with an Atmel ATmegal280 microcontroller.

e Finally, the fourth subsection describes a new test which has been performed on all
measured devices (both from period 1 and 2): the Min-Entropy Test, as described in
the previous section. This test is used to evaluate whether a platform is suitable to
create a strong seed for a Random Number Generator.

In the rest of this section, the results for the above described analyses can be found. Con-
clusions about these results are combined with those from the first project period in the next
section.
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2.3.1 New Temperature Cycle Tests on platforms from first project phase

Microchip PIC16F1825

Within-class HD traces per device
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Figure 2.3.1: Within-class Hamming distance of SRAM in PIC16F1825 measured over differ-
ent temperatures.

Figure 2.3.1 shows the results from the measurements of the Temperature Cycle Test for
the 16 Microchip PIC16F1825 microcontrollers (each individual line representing one of the
devices). PUF responses for all devices have been measured at three different temperatures:
—30°C, +25°C and 4+90°C'. For all devices the first measurement at +25°C has been used
for enrolment (so it has 0% noise); all other measurements are compared to this enrolment
measurement. The figure shows that the maximum within-class Hamming distance for these
devices is extremely high, close to 50%. This amount of noise can certainly not be corrected
using commonly known Fuzzy Extractors, because it is in the same order of magnitude as the
Between-Class Hamming Distance should be. The explanation for these high noise values at
low temperatures can be found in Figure 2.3.2, which displays the Hamming Weights of these
measurements at different temperatures. What can be seen in this picture is that the SRAMs
basically “freeze” at low temperatures, resulting in all SRAM cells going to ‘0’. Since the
Hamming Weight is going from 50% at enrollment to almost 0% at low temperatures, it is clear
that the Hamming Distances between measurements at these temperatures is approximately
50%. Therefore, these devices fail the Temperature Cycle Test.
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Hamming Weight traces per device

08
N N
Q§§b Qéﬁ) QS":D
07r /\Q,@ /\Q_,& /\Q,é‘
06+

Fractional Hamming Weight

| | | | | |
40 50 60 70 80 90
Measurement number

Figure 2.3.2: Hamming weight of SRAM in PIC16F1825 measurements over different tem-
peratures.
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ST STM32F100RS8

Within-class HD traces per device
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Figure 2.3.3: Within-class Hamming distance of SRAM in STM32F100R8 measured over
different temperatures.

Figure 2.3.3 shows the results from the measurements of the Temperature Cycle Test
for the 9 ST STM32F100R8 microcontrollers (each individual line representing one of the
devices). PUF responses for all devices have been measured at three different temperatures:
—30°C, +25°C' and 4+90°C. For all devices the first measurement at +25°C' has been used
for enrolment (so it has 0% noise); all other measurements are compared to this enrolment
measurement. The figure shows that the maximum within-class Hamming distance for these
devices, over all tested temperatures, is less than 12%. This amount of noise can easily be
corrected using commonly known Fuzzy Extractors. Therefore, these devices pass the
Temperature Cycle Test.
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Atmel ATmega328p
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Figure 2.3.4: Within-class Hamming distance of SRAM in ATmega328p measured over dif-
ferent temperatures.

Figure 2.3.4 shows the results from the measurements of the Temperature Cycle Test
for the 16 Atmel ATmega328p microcontrollers (each individual line representing one of the
devices). PUF responses for all devices have been measured at three different temperatures:
—30°C, +25°C' and 4+90°C. For all devices the first measurement at +25°C' has been used
for enrolment (so it has 0% noise); all other measurements are compared to this enrolment
measurement. The figure shows that the maximum within-class Hamming distance for these
devices, over all tested temperatures, is less than 14%. This amount of noise can easily be
corrected using commonly known Fuzzy Extractors. Therefore, these devices pass the
Temperature Cycle Test.
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2.3.2 New data for platform from first project phase: NVIDIA GTX 295

Information

Number of devices measured: 510
Number of measurements per device: 19

PUF type: SRAM PUF
PUF size: 16360 bytes

Repeated Start-up Test

Within-class HD traces per device
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Figure 2.3.5: Within-class Hamming distance of SRAM in GTX 295 measurements.

Figure 2.3.5 shows the Hamming distances of 19 measurements of the Repeated Start-up
Test on the 510 SRAMs from NVIDIA GeForce GTX 295 graphics cards (each individual line
representing one of the SRAMs). The first measurement has been used for enrolment (so it
has 0% noise); all other measurements are compared to this enrolment measurement. The
maximum within-class Hamming distance for these devices (at room temperature) is less than
8%. This amount of noise can easily be corrected using commonly known Fuzzy Extractors.
Therefore, these devices pass the Repeated Start-up Test.
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Hamming Distance distributions, measured over 510 devices
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Figure 2.3.6: Between-class versus within-class Hamming distance of SRAM in GTX 295
measurements.

Between-Class Hamming Distance Test

Figure 2.3.6 compares the results from the Repeated Start-up Test (in black) to the results
of the Between-Class Hamming Distance Test (in red) for the 510 SRAMs from NVIDIA
GeForce GTX 295 graphics cards. The Hamming distance between different devices is much
higher than the noise measured for each individual device. This indicates that the devices
can all be uniquely identified based on their PUF responses.

Zooming in on the between-class distribution (see Figure 2.3.7), it becomes clear that this
is not a typical distribution.This is because this distribution actually consists of two separate
distributions, which are mirrored around 50%. Let’s first analyse the left distribution, which
is similar to a Gaussian distribution with a mean value around 45%. This indicates that the
PUF responses of the different SRAMs are slightly correlated, since the mean value of the
distribution is lower than 50%. Hence, there is some kind of pattern present in the SRAMs
that slightly decreases the between-class Hamming distances. However, Figure 2.3.7 shows
a second distribution with a mean value around 55%. Investigations have shown that this
distribution occurs because half of the measured SRAMs show the inverse of the already
mentioned pattern in their PUF responses. If two SRAMs are compared to each other, which
have an identical pattern in their data, the between-class Hamming distance will be lower
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than 50% and this value ends up in the left distribution. However, if two SRAMs with inverse
patterns in their PUF responses are compared, their between-class Hamming distance will
be higher than 50% (due to negative correlation) and this value will end up in the right
distribution.

Hence, it is clear that there is some correlation (both positive and negative) between the
PUF responses from different SRAMs of the GTX GPUs. However, these SRAMs are still
suitable as an input for commonly known Fuzzy Extractors. This is because these algorithms
are able to remove the correlated patterns from SRAM data in order to extract sufficient
entropy from these SRAMs, under the assumption that they receive an amount of SRAM
that is significantly higher than the length of the key that needs to be derived. Given that
the SRAMs of the GTX CPUs are very large, sufficient SRAM is available to derive strong in-
dependent keys. Therefore, these devices (weakly) pass the Between-Class Hamming
Distance Test.

Histogram of Between-class relative hamming distances
6000 T T T T T T

5000

4000

3000

2000

1000
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Mean = 4.99e-001, STD = 5.80e-002

Figure 2.3.7: Between-class Hamming distance distribution of GTX 295 measurements.
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Hamming Weight traces per device
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Figure 2.3.8: Hamming weight of SRAM in GTX 295 measurements.

Hamming Weight Test

Figure 2.3.8 shows the Hamming weight of the 19 measurements from the Repeated Start-up
Test for the 510 SRAMs from NVIDIA GeForce GTX 295 graphics cards (each individual
line representing one of the SRAMs). For all SRAMSs, the fractional Hamming weight of the
measurements is slightly higher than 50% (between 50% and 55%), i.e., there are more 1’s
than 0’s in the PUF responses (an example PUF response is shown in Figure 2.3.9). This
indicates that these PUF responses require some pre-processing in order to be suitable inputs
for commonly known Fuzzy Extractors. This causes some overhead in the size requirements
for the PUF response; however, as stated before, these requirements can easily be fulfilled.
Therefore, these devices (weakly) pass the Hamming Weight Test.

Enrolled bits of device 1 [antilles0-0-00]

Figure 2.3.9: Example of SRAM PUF response from GTX 295 measurement.



16 PUFFIN — Physically unclonable functions found in standard PC components

2.3.3 New platforms: LM4F120H5QR and AM3358
Texas Instruments Stellaris LM4F120H5QR

Information

Number of devices measured: 15

Number of measurements per device: 1000

PUF type: SRAM PUF
PUF size: 30KB

Repeated Start-up Test

Within-class HD traces per device

0.08-

007 -

0.06

0.059,
0.04}

0.03+

Fractional Hamming Distance

0.02+

001+

0 | | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Measurement number

Figure 2.3.10: Within-class Hamming distance of SRAM in LM4F120H5QR measurements.

Figure 2.3.10 shows the results from the measurements of the Repeated Start-up Test
for the 15 Texas Instruments Stellaris LM4F120H5QR microcontrollers (each individual line
representing one of the devices). For each device, the first measurement has been used for
enrolment (so it has 0% noise); all other measurements are compared to this enrolment
measurement. The figure shows that the maximum within-class Hamming distance for these
devices (at room temperature) is less than 7%. This amount of noise can easily be corrected
using commonly known Fuzzy Extractors. Therefore, these devices pass the Repeated
Start-up Test.
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Hamming Distance distributions, measured over 15 devices
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Figure 2.3.11: Between-class versus within-class Hamming distance of SRAM in
LM4F120H5QR measurements.

Between-Class Hamming Distance Test

Figure 2.3.11 compares the results from the Repeated Start-up Test (in black) with the results
of the Between-Class Hamming Distance Test (in red) for the 15 Texas Instruments Stellaris
LM4F120H5QR microcontrollers. This figure clearly shows that the Hamming distance be-
tween different devices is much higher than the noise measured for each individual device.
This indicates that the devices can all be uniquely identified based on their PUF responses.

In more detail: We calculated 15 x 14 : 2 = 105 Hamming distances between the 15
devices. These fractional distances fit a Gaussian distribution with a mean value of 49.9%.
Since this value is approximately 50%, this is an indication that there is very little (to no)
correlation between the PUF responses from different devices, which makes them suitable
as an input for commonly known Fuzzy Extractors. Therefore, these devices pass the
Between-Class Hamming Distance Test.
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Hamming Weight traces per device

06

05

04r

03r

Fractional Hamming Weight

01r

0 1 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Measurement number

Figure 2.3.12: Hamming weight of SRAM in LM4F120H5QR measurements.

Hamming Weight Test

Figure 2.3.12 shows the Hamming weight of the measurements from the Repeated Start-up
Test for the 15 Texas Instruments Stellaris LM4F120H5QR microcontrollers (each individual
line representing one of the devices). For all devices, the Hamming weight of the measurements
is close to 50%, indicating an equal number of 0’s and 1’s in the PUF responses (also visible in
the plotted example PUF response in Figure 2.3.13). This indicates that these PUF responses
are suitable inputs for commonly known Fuzzy Extractors. Therefore, these devices pass
the Hamming Weight Test.

Figure 2.3.13: Example of SRAM PUF response from LM4F120H5QR measurement.
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Texas Instruments AM3358 on BeagleBone board

Information

Number of devices measured: 3

Number of measurements per device: 1000

PUF type: SRAM PUF
PUF size: 30KB
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Figure 2.3.14: Within-class Hamming distance of SRAM in BeagleBone measurements.

Figure 2.3.14 shows the results from the measurements of the Repeated Start-up Test for
the 3 Texas Instruments AM3358 microcontrollers on BeagleBone boards (each individual
line representing one of the devices). For each device, the first measurement has been used
for enrolment (so it has 0% noise); all other measurements are compared to this enrolment
measurement. The figure shows that the maximum within-class Hamming distance for these
devices (at room temperature) is less than 9%. This amount of noise can easily be corrected
using commonly known Fuzzy Extractors. Therefore, these devices pass the Repeated
Start-up Test.
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Hamming Distance distributions, measured over 3 devices
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Figure 2.3.15: Between-class versus within-class Hamming distance of SRAM in BeagleBone
measurements.

Between-Class Hamming Distance Test

Figure 2.3.15 compares the results from the Repeated Start-up Test (in black) with the results
of the Between-Class Hamming Distance Test (in red) for the 3 Texas Instruments AM3358
microcontrollers on BeagleBone boards. This figure clearly shows that the Hamming distance
between different devices is much higher than the noise measured for each individual device.
This indicates that the devices can all be uniquely identified based on their PUF responses.

In more detail: We calculated 3 x 2 : 2 = 3 Hamming distances between the 3 devices.
These 3 distances cannot be fitted by a Gaussian distribution, because the number of values is
not large enough for a proper Gaussian fit. The distances between the devices are all around
49.4%. Since this value is quite close to 50%, this is an indication that there is very little
correlation between the PUF responses from different devices (Figure 2.3.17 on the next page
shows some slight patterning in the SRAM data, but this has very little influence on the
Between-Class Hamming distances), which makes them suitable as an input for commonly
known Fuzzy Extractors. Therefore, these devices pass the Between-Class Hamming
Distance Test.
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Hamming Weight traces per device
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Figure 2.3.16: Hamming weight of SRAM in BeagleBone measurements.

Hamming Weight Test

Figure 2.3.16 shows the Hamming weight of the measurements from the Repeated Start-
up Test for the 3 Texas Instruments AM3358 microcontrollers on BeagleBone boards (each
individual line representing one of the devices). For all devices, the Hamming weight of the
measurements is only slightly below 50%, indicating an almost equal number of 0’s and 1’s in
the PUF responses (also visible in the plotted example PUF response in Figure 2.3.17). This
indicates that these PUF responses are suitable inputs for commonly known Fuzzy Extractors.
Therefore, these devices pass the Hamming Weight Test.
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Figure 2.3.17: Example of SRAM PUF response from BeagleBone measurement.
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Atmel ATmegal280 on Arduino Mega board
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Number of devices measured: 2
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PUF type: SRAM PUF
PUF size: 8KB
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Figure 2.3.18: Within-class Hamming distance of SRAM in Arduino Mega measurements.

Figure 2.3.18 shows the results from the measurements of the Repeated Start-up Test
for the 2 Atmel ATmegal280 microcontrollers on Arduino Mega boards (each individual
line representing one of the devices). For each device, the first measurement has been used
for enrolment (so it has 0% noise); all other measurements are compared to this enrolment
measurement. The figure shows that the maximum within-class Hamming distance for these
devices (at room temperature) is less than 3%. This amount of noise can easily be corrected
using commonly known Fuzzy Extractors. Therefore, these devices pass the Repeated
Start-up Test.
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Hamming Distance distributions, measured over 2 devices
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Figure 2.3.19: Between-class versus within-class Hamming distance of SRAM in Arduino
Mega measurements.

Between-Class Hamming Distance Test

Figure 2.3.19 compares the results from the Repeated Start-up Test (in black) with the
results of the Between-Class Hamming Distance Test (in red) for the 2 Atmel ATmegal280
microcontrollers on Arduino Mega boards. This figure clearly shows that the Hamming
distance between the two different devices is much higher than the noise measured for each
individual device. This indicates that the devices can all be uniquely identified based on their
PUF responses.

In more detail: We calculated the Hamming distances between the two devices. It is clear
that based on one distance, no distribution fitting can be performed. The distances between
the two devices is 41.7%. This is an indication that there is some correlation between the PUF
responses from different devices, but they should still be suitable as an input for commonly
known Fuzzy Extractors. This is because these algorithms are able to remove the correlated
patterns from SRAM data in order to extract sufficient entropy from these SRAMs, under
the assumption that they receive an amount of SRAM that is significantly higher than the
length of the key that needs to be derived. Given that the SRAMs of the ATmegal280
microcontrollers are large, sufficient SRAM is available to derive strong independent keys.
Therefore, these devices (weakly) pass the Between-Class Hamming Distance Test.
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Figure 2.3.20: Hamming weight of SRAM in Arduino Mega measurements.

Hamming Weight Test

Figure 2.3.20 shows the Hamming weight of the measurements from the Repeated Start-up
Test for the 2 Atmel ATmegal280 microcontrollers on Arduino Mega boards (each individual
line representing one of the devices). For both devices, the Hamming weight of the measure-
ments is significantly higher than 50% (around 70%), i.e., there are more 1’s than 0’s in the
PUF responses (an example PUF response is shown in Figure 2.3.21, where the black vertical
lines indicate initialized parts of the SRAM that have been excluded from the analysis). This
indicates that these PUF responses require pre-processing in order to be suitable inputs for
commonly known Fuzzy Extractors. This causes overhead in the size requirements for the
PUF response; however, as stated before, these requirements can be fulfilled due to the large
size of the SRAMs. Therefore, these devices (weakly) pass the Hamming Weight Test.
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Figure 2.3.21: Example of SRAM PUF response from Arduino Mega measurement.
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2.3.4 New test: Min-Entropy Tests on all measured devices
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Figure 2.3.22: Min-entropy calculations for STM32F100RB based on 50 measurements.

As stated before, the Min-Entopy Test is used to evaluate whether measured memories
are suitable for creating a high quality seed for the Random Number Generator that has been
developed in WP3. For this purpose, the amount of entropy present in the noise of SRAM
start-up patterns is determined, based on NIST specification SP800-90A.

Under the assumption that all bits are independent, the min-entropy of each individual
SRAM cell can be summed to derive the min-entropy of the entire memory using Equations 2.1
and 2.2. The more measurements of a single device are available at a specific temperature,
the more accurate the estimate of the probabilities will be and therefore the more accurate
the min-entropy estimate will be. Plotting the min-entropy against the number of measure-
ments used for the calculation will result in a function that increases with the number of
measurements, up to a certain asymptotic value for the min-entropy. An example of such a
plot can be seen in Figure 2.3.22 for 50 measurements of 11 devices of type ST STM32F100RB
microcontrollers. In this example the minimal min-entropy after 50 measurements at room
temperature over all devices is 6.7%.

Using this method, the minimal min-entropy for all devices measured during the PUFFIN
project has been calculated. In Table 2.3.1 all results from the Min-Entropy Tests are listed.
From these results it becomes clear that the amount of entropy that can be extracted from
the noise on PUF responses varies between the different platforms and conditions.

The Microchip PIC16F1825 microcontrollers are not suitable for creating strong random
seeds, due to the severe byte wise biasing (as already reported in Deliverable D2.1) and the
observation earlier in this document that these SRAMs basically “freeze” at low temperatures
resulting in all SRAM cells going to ‘0’. For the Texas Instruments MSP430F5308 microcon-
trollers it appears that the amount of min-entropy available also depends on the ambient
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temperature. However, these memories do not freeze and therefore the consequences are less
severe here than they are for the PIC16F1825.

For all other platforms it appears that the SRAMs are suitable for creating strong random
seeds. However, the amount of SRAM required for such a seed varies significantly between
the platforms. The higher the min-entropy of the noise is, the less SRAM is required for
making the seed. Therefore, it is important to design the Random Number Generator with
overhead on the amount of SRAM used in order to make sure that the amount of entropy
will always be sufficient for creating a strong seed.

Example. In case a 128 bits random seed should be extracted from a GTX 295 SRAM,
the minimal amount of SRAM required can be calculated as follows:

Min-entropy for GTX295 = 2.1% —> 128 / 0.021 = 6096 bits = 762 bytes.

Therefore, at least 762 bytes of GTX 295 SRAM should be used as input for a hash-function,
which turns it into a 128 bits seed. However, in order to be on the safe side, it is recommend-
able to use some overhead for this purpose. For example use 1KB of SRAM, to make sure
that under any (unpredictable) condition the amount of entropy available in the SRAM will
be sufficient to create strong seeds.

Platform [ +25°C]  —30°C|  +90°C|
Ainol Novo 7 5.4% n.a. n.a.
MSP430F5308 5.0% 2.3% 3.2%
PIC16F1825 1.7% 1.2% 2.1%
STM32F100R8 6.6% 5.3% 6.3%
STM32F100RB 6.7% n.a. n.a.
ATMega328p 2.7% 2.3% 3.2%
GTX 295 2.1% n.a. n.a.
Pandaboard 4.3% n.a. n.a.
LM4F120H5QR 5.9% n.a. n.a.
BeagleBone 4.0% n.a. n.a.
Arduino Mega 2.5% n.a. n.a.

Table 2.3.1: Minimum min-entropy of noise for all devices at different tested temperatures.
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2.4 Conclusions

[Platform | Quantity]] RST| TCT| BCHDT] HWT| MET]
Ainol Novo 7 7 Pass n.a. Pass Pass Pass
MSP430F5308 15 Pass| Pass| (Weak) Pass| (Weak) Pass| (Weak) Pass
PIC16F1825 16 Pass| Fail Fail Fail Fail
STM32F100R8 11 Pass| Pass| (Weak) Pass Pass Pass
STM32F100RB 11 Pass n.a.| (Weak) Pass Pass Pass
ATMega328p 16 Pass| Pass| (Weak) Pass| (Weak) Pass Pass
GTX 295 510 Pass n.a.| (Weak) Pass| (Weak) Pass Pass
Pandaboard ) Pass n.a. Pass Pass Pass
LM4F120H5QR 15 Pass n.a. Pass Pass Pass
BeagleBone 3 Pass n.a. Pass Pass Pass
Arduino Mega 2 Pass| Pass| (Weak) Pass| (Weak) Pass Pass

Table 2.4.1: All test results for the different devices (phase 1 and 2)

Table 2.4.1 gives an overview of all test results from phase 1 and 2 of the PUFFIN project.
The most important conclusion that can be drawn from these results is that PUF behaviour
can be found in the SRAMs of many different commercially available platforms. Most of the
SRAMs that have been measured show promising results and therefore are suitable for use in
PUF implementations; however, the amount of pre-processing required on the data will vary
between the platforms.

As already discovered in the first phase of the project, the PIC16F1825 microcontroller
SRAM measurements are not usable for PUF applications. Due to severe (byte wise) biasing
of the PUF responses, these SRAMs do not provide enough entropy/uniqueness to be the
basis for a proper PUF implementation. Also, the “freezing” of the SRAM, where at low
temperatures all cells tend to start-up as ‘0’, has extremely negative effects on both the
reliability (during TCT) and uniqueness (during MET) of these SRAMs. After finishing the
project, this remains the only device for which we could access uninitialized SRAM that was
not suitable for PUF implementations.

During the second phase of the project, several devices from the first project phase have
been tested at extreme temperatures. Besides additional negative results for the PIC16F1825
devices, the STM32F100R8 and ATMega328p did show that they are still usable as PUFs
under extreme circumstances.

Furthermore, additional measurements on the NVIDIA GeForce GTX 295 graphics cards
showed that these devices contain a lot of SRAM memories that are suitable for use as PUFs.
Even though these SRAMSs show slightly decreased entropy values, due to some pattern in the
PUF responses, with sufficient SRAM and processing by the Fuzzy Extractor it is no problem
to create PUF implementations on these devices.

New platforms that have been measured during the second project phase are the Texas
Instruments Stellaris LM4F120H5QR microcontrollers, BeagleBone development boards, and
Arduino Mega boards. The three microcontrollers have successfully passed all tests at room
temperature, adding to the extensive portfolio of the PUFFIN project.

This Min-Entropy Test has also been performed on all platforms measured in the PUFFIN
project. Conclusions here are that all platforms, except for the PIC16F 1825, are suitable for
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creating strong random seeds as long as the amount of SRAM used for such a seed is chosen
based on the amount of min-entropy available.

All results from this WP2 work have been communicated to WP3 such that the obtained
results could be used as input for the use-case implementations that have been developed in
WP3. Recommendations that have been made to WP3 include:

e Results of data analysis in WP2 of the PUFFIN project has shown that it is possible to
create good PUF implementations on a broad range of electronic hardware platforms.
Devices in which PUFs have been found include microprocessors, tablets, smartphones,
and GPUs. This shows that PUFs are actually much more commonly available than
has been assumed up to now. The PUFFIN project has successfully shown that PUFs
are already present on many COTS platforms and can be utilized with very limited
overhead.

e Out of all studied platforms, the Pandaboard is the most interesting candidate for im-
plementing prototypes in WP3. This platform passes all performed tests, but more
importantly it is a computer development platform that offers a completely open-source
Linux/Android development environment, including the possibility to modify its boot-
loader. This enables WP3 to obtain PUF data from the SRAM in a tablet/smartphone
environment during the boot sequence of the operating system, which is a very inter-
esting scenario for the PUFFIN project.

e Do not use the PIC16F 1825 microcontroller for creating any PUF related demonstrators.
The tests have shown that these devices are neither reliable nor unique enough to be
considered decent PUFs.

e All platforms (except for PIC16F1825) that have been tested during the PUFFIN project
show good prospects for creating strong seeds for Random Number Generators. This is
a very encouraging result for adding a low-cost entropy source to resource constrained
COTS devices. Given that this is serious problem in hardware security, this is an
additional achievement of the PUFFIN project besides showing the possibility for PUF
implementations in these devices.



Chapter 3

New methods for PUF analysis

Besides analysing the PUF measurements from WP1, work in WP2 has also been focussed
on developing new methods for analysing PUF data. For this purpose two new analysis
methodologies were already developed during the first phase of the PUFFIN project. These
two methods focussed on analysing PUF reliability and uniqueness respectively and have been
described in Deliverable D2.1.

In the second phase of the PUFFIN project a new methodology has been developed (and
applied) for analysing the aging behaviour of SRAM PUFs. This methodology has shown how
SRAM will behave over time depending on different use case scenarios. From the results it
has become clear that it is possible to influence the aging behaviour of SRAM PUF depending
on how data is stored in these SRAMs when the device is powered. This way it is possible
to make sure that SRAM PUFs will behave reliably over time, regardless of how long the
lifetime of a device is.

A paper has been written and published about this new analysis methodology and the
measures required for countering the effects of silicon aging for SRAM PUF's in “Countering
the Effects of Silicon Aging on SRAM PUFs”, by Roel Maes and Vincent van der Leest
(both Intrinsic-ID). The paper has been published at the IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST) 2014.

For this paper measurements have been performed using devices designed and produced
in the FP7 project UNIQUE (contract number: 238811). Reason for this is that the UNIQUE
devices and test boards have been designed specifically for straining tests under extreme cir-
cumstances, like the described aging tests. In case we would have used COST devices from
the PUFFIN project, it is highly likely that the devices or test boards would have broken
down during the runtime of these aging tests. Therefore, it was much more appropriate to use
the UNIQUE devices and boards for these tests. Even though tests have been performed on
other devices than COTS, the results are still completely valid for the PUFFIN devices as well.

To provide a complete overview of the work that has been performed on (as well as the
results from) developing the new analysis methodology, the above mentioned paper has been
attached to this deliverable as an appendix.

Furthermore, a second appendix has been added to this document containing a paper that

has been submitted by members of the PUFFIN project to the Journal of Cryptographic En-
gineering. This paper contains an overview of the work had been performed in the PUFFIN

29
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project on analysing PUF data that have been gathered during the course of this project.
Therefore this paper should not be excluded from the final overview of WP2, given that is
the most important dissemination of the results from WP2 to the scientific community. It
does not contain any new information compared to the Deliverables D2.1 and D2.2, but it
provides a very nice overview of the results. The paper is currently still under review by the
journal.
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Countering the Effects of
Silicon Aging on SRAM PUFs

Roel Maes
Intrinsic-ID
Eindhoven, The Netherlands
roel.maes @intrinsic-id.com

Abstract—Silicon aging, in particular NBTI, causes many PUFs
to exhibit a natural tendency of growing less reliable over
time. This is inconvenient or even unacceptable for in-the-field
applications. In case of SRAM PUFs it is observed that the impact
of NBTI aging depends on the data stored in the SRAM. In this
work, we investigate the effects of data-dependent silicon aging
on SRAM PUF reliability under a number of realistic scenarios.
In an accelerated aging experiment on a 65nm CMOS SRAM
PUF implementation it is observed that many scenarios cause a
smaller reliability reduction than natural aging. Some scenarios
even show anti-aging effects, i.e. they cause the SRAM PUF to
grow more reliable over time. This is a significant improvement
when using an SRAM PUF. Even more so because data-dependent
(anti-)aging has a particularly low overhead, requiring neither
any changes to the PUF circuit nor any pre-deployment effort.

I. INTRODUCTION

A physically unclonable function or PUF implemented on a
silicon integrated circuit (IC) can be used as a hardware root-
of-trust for the digital system running on that IC, e.g. to gener-
ate and store the system’s master encryption keys. Such PUF-
based key generators are increasingly being deployed in digital
security products [1], [2], [3] since they often outcompete
traditional non-volatile memories (e.g. Flash, EEPROM, anti-
fuses, etc.) as highly secure yet efficient key storage solutions.

For such applications, a high-quality PUF is needed which
is both unpredictable as well as reliable, i.e. PUF responses
are random per instantiation but repeatable with limited noise
over time and under all circumstances. It is well known that a
PUF’s operating conditions such as environment temperature
and supply voltage affect its reliability. PUF implementations
are therefore tested under varying conditions to determine their
worst-case reliability, typically occurring at high temperature
and voltage [4]. An application like a PUF-based key generator
needs to deal with (and hence be designed for) this worst-case
reliability to ensure a failure-free operation in the field.

Another variable affecting the behavior and hence the
reliability of a PUF implementation is the effective lifetime
of the IC. Certain physical phenomena in a silicon IC cause
a circuit’s parameters to slowly change over time, mostly
degrading its performance and even leading to failures. The
accumulated effect of these phenomena is called silicon aging.
Because PUF responses take their randomness from minute
process variations in the circuit’s parameters, it is evident
that silicon aging affects and usually also degrades a PUF’s

Vincent van der Leest
Intrinsic-ID
Eindhoven, The Netherlands
vincent.van.der.leest @intrinsic-id.com

reliability over time [5]. A particular consequence hereof is
that the worst-case reliability of a typical PUF construction
is not only to be found at high temperatures and voltages,
but also at a point in the future at the end of the device’s
lifetime, after years of silicon aging. This makes it non-trivial
to estimate the worst-case reliability. Moreover, the required
effort to obtain such an estimate often results in silicon aging
being (inappropriately) ignored as a reliability degradation
factor in evaluations of PUF implementations.

Based on physical models we can to a certain extent predict
or simulate the expected effect of silicon aging. Another option
is to run a silicon device at elevated temperature and voltage
which accelerates the aging phenomena, and allows us to
measure the effect after a significantly shorter amount of time.
Based on these methods, an estimated guess of the worst-case
reliability at the end of the device’s lifetime can be made.

As an alternative to designing a PUF-based application for
predicted future worst-case reliability, a radically different
approach can be taken. As we will demonstrate in this work,
for certain PUF constructions (in particular SRAM PUFs) it
is possible to slow down, halt, or even reverse the effects of
silicon aging on the PUF response reliability. The latter has the
tremendous advantage that the PUF’s worst-case reliability is
then to be found at the beginning of the device’s lifetime and
can be measured immediately after manufacturing. Over time
the PUF’s reliability will now stay constant or even improve
which means that the reliability requirements for the PUF-
based application can be significantly relaxed, resulting in a
gain in efficiency (e.g. less complex error-correcting codes).

Related Work: An SRAM PUF, as proposed by Guajardo et
al. [6], is a PUF construction based on the power-up state of
an SRAM array. SRAM PUFs have been thoroughly studied
and invariably show high-quality PUF behavior, see e.g. [4],
[7]. However, it was also shown by Maes et al. [5] that
without precautions, SRAM PUF reliability does suffer from
silicon aging. Bhargava et al. [8], [9] were the first to study
the potential beneficial effects of silicon aging phenomena
on the reliability of PUF structures, including SRAM PUFs.
In [8] they demonstrate that a post-manufacturing burn-in
stress (high temperature and high voltage) applied for 120
hours reduces the initial amount of bit errors of an SRAM
PUF by 40%. However, such a long pre-deployment burn-in
time does represent a large overhead in the manufacturing flow



of a typical silicon IC. Moreover, once in the field their SRAM
PUF is again subject to regular silicon aging and its reliability
will deteriorate over time.

Our Contributions: In this work, we present:

o Anti-aging techniques for SRAM PUFs which are purely
based on data-dependent silicon aging effects in regular
SRAM cells during the regular lifetime of the IC. As a
consequence, these techniques are directly usable on any
standard SRAM (no circuit changes) without any pre-
deployment overhead (no burn-in time).

e An overview and experimental validation (in 65nm
CMOS) of a number of (anti-)aging scenarios differing
only in the circumstances for generating the anti-aging
data, and an assessment of their effect on the SRAM
PUF’s reliability over time.

o The identification of ideal anti-aging scenarios which
effectively improve the SRAM PUF’s reliability over the
lifetime of the IC, with a reduction of 0.35% in the
average amount of bit errors for the most optimal case.

Paper Outline: In Sect. Il we provide some background on

silicon aging, in particular the aging effects which enable data-
dependent anti-aging for SRAM PUF cells. Next, in Sect. III
we introduce a number of plausible (anti-)aging scenarios for
SRAM PUFs and experimentally validate them on a 65nm
CMOS test ASIC in an accelerated aging experiment. The
most important findings of this experiment are discussed in
Sect. IV and finally we conclude in Sect. V.

II. BACKGROUND
A. PUF Quality Measures

The quality of a PUF is quantified by a number of experi-
mentally verifiable measures. A PUF’s reliability is measured
by its average intra-distance, i.e. the (Hamming) distance
between multiple evaluations of the same response on the same
PUF instance. This is a good estimate of the number of bit
errors one can expect in a response evaluation and is preferably
very small. PUF response uniqueness on the other hand is mea-
sured by the average inter-distance, i.e. the distance between
responses evaluated on different PUF instances. For binary
response values, the average inter-distance is preferably very
close to 50% of the response length. A PUF’s unpredictability
is ideally measured by evaluating the response entropy, but
due to limitations on the amount of available experimental data
this is often difficult to do in a meaningful manner. However,
a necessary condition for a high response entropy is a low
response bias which can be efficiently and accurately measured
by calculating the average (Hamming) weight of the response
vectors. Ideally the average response Hamming weight is also
close to 50% of the response length.

B. Aging Effects in CMOS Silicon

The nominal operation of a silicon IC has a number of
unintended but unavoidable side-effects which result in per-
manent physical alterations to the circuit’s physical structure.
Hence, an operational IC slowly but gradually changes over
time, i.e. it ages. Eventually the induced physical changes

affect the circuit’s operation, typically in a degrading manner,
and ultimately even lead to circuit failures after a long period.
One dominant aging effect in modern ICs is negative-bias tem-
perature instability (NBTI) causing a gradual increase in the
threshold voltage, which is most evident in switched-on PMOS
transistors. Other independent physical aging phenomena in
CMOS devices are hot-carrier injection (HCI), time-dependent
dielectric breakdown (TDDB) and electromigration (EM). For
an overview of silicon aging effects we refer to [10].

C. SRAM PUFs and Data-Dependent (Anti-)Aging

An SRAM PUF [6] evaluates the power-up pattern of
a standard 6T SRAM array. As shown in Fig. 1, at its
core each SRAM cell in the array comprises two nominally
matched CMOS inverters which are cross-coupled. Uncontrol-
lable CMOS process variations introduce random parameter
deviations which cause a mismatch between the inverter pairs
affecting their power-up state. The predominant mismatch in
an SRAM cell determining its power-up state is the differ-
ence between the threshold voltages (Vi) of both PMOS
transistors P1 and P2. E.g. consider the case when random
variations cause Vip pi1 to be slightly smaller than Vi pa. As
a result, at power-up (rising Vgq) P1 will start conducting
before P2, causing A to go logically high and preventing P2
from switching on. The power-up state of the cell is hence
A = 1. The larger the mismatch between Vi, p1 and Vi po,
the stronger the power-up preference of a cell and hence
the smaller the probability to power-up in its wrong state
causing a PUF response bit error. Extensive experiments [4],
[7] have demonstrated that due the independent random nature
of process variations on each SRAM cell, the power-up pattern
of an SRAM array demonstrates excellent PUF behavior, i.e.
small intra-distances and both inter-distances and Hamming
weights close to 50%.
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Fig. 1: Cross-coupled CMOS inverter circuit at the core of
each SRAM cell. (Two SRAM access MOSFETSs not shown.)

The effect of NBTI aging for SRAM cells depends on
the bit value stored in the cell. When the cell stores a zero
(A = 0), Pl is switched off and P2 is switched on. As
a result, Vi, p2 will increase over time due to NBTI while
Vin,p1 is unaffected. For A = 1 the opposite effect occurs.
Combined with the power-up behavior, the situation is such
that the PMOS with the smallest V4, tends to turn on at power-
up and will subsequently experience a gradually increasing
Vin due to NBTI. The natural tendency of an SRAM cell is
hence to age such that |Viy p1 — Vin p2| grows smaller over
time. From an SRAM PUF perspective, this is a disadvantage
since a decreasing |Vin p1 — Vin,p2| means a higher probability
of a PUF response bit error. In other words, SRAM PUFs



tend to become less reliable over time due to silicon aging,
as was experimentally observed, e.g. in [5]. Luckily, this
disadvantageous tendency can be counteracted. An evident
solution is to let each cell store the inverse of its power-up
value, since this would in general increase |Vin p1 — Vin po
and hence make the corresponding SRAM PUF response bit
effectively more reliable over time. This effect is called anti-
aging in the context of (SRAM) PUFs.

III. EXPERIMENT: (ANTI-)AGING IN SRAM PUFs
A. Motivation

From Sect. II it is clear that the effect of silicon aging (in
particular NBTI) on SRAM PUF reliability depends heavily
on the (long-term) data stored in the SRAM, ultimately even
permitting anti-aging. This observation gives rise to a number
of interesting issues and questions worth investigating, e.g.:

« SRAM power-up states partially change between power-
ups (intra-distance). Which particular state needs to be
inverted to serve as anti-aging data? What happens when
this exact state can not or only partially be reconstructed?

e When used as PUF response, SRAM power-up data
is typically security-sensitive information. Which anti-
aging options are still possible when all SRAM power-up
information (including its inverse) needs to be erased?

« What are the (anti-)aging effects when the SRAM is used
for other means after having served its PUF purpose?

« What is the effect of data-dependent (anti-)aging on other
quality measures of SRAM PUPFs, besides reliability?

These questions each represent different possible (anti-)aging
scenarios for SRAM PUFs, which will be experimentally
studied in this section.

B. (Anti-)Aging Scenarios

We start by listing the different (anti-)aging scenarios which
we will test on a 65nm CMOS implementation of an SRAM
PUF. For each scenario we detail the method used to generate
the anti-aging data (i.e. the data which is long-term stored in
the SRAM) and motivate the scenario by explaining how it
can arise in a realistic use case. We consider the typical usage
of a PUF in which an initial response measurement, called
enrollment, is compared to or reconstructed from a later in-
the-field measurement, called reconstruction. In the case of
a key generator, the reconstruction measurement needs to be
error-corrected to obtain the original enrollment response from
which the key is derived.

1) No Anti-Aging: NO_AA
Scenario: The long-term data stored in the SRAM are the
(noisy) SRAM power-up states at reconstruction.
Motivation: This is the trivial scenario where no action is
taken (no anti-aging, no clearing, nor any other use of the
SRAM), and the reconstruction power-up data is maintained
unmodified in the SRAM array for the whole time the SRAM
is powered. This scenario is mostly considered as a reference
for the other scenarios. As derived in Sect. II, this is assumed
to be the pessimistic scenario which fully exhibits the natural
tendency of an SRAM PUF to grow less reliable over time.

2) Full Anti-Aging: FULL_AA
Scenario: Using error-correction techniques, the initial enroll-
ment power-up state is perfectly reconstructed from a (noisy)
reconstruction measurement. The long-term anti-aging data is
the inverse of the corrected enrollment state.
Motivation: As derived in Sect. II, this is assumed to be
the optimal scenario where the enrollment power-up state
is continuously reinforced and the reliability of the SRAM
PUF (w.r.t. the enrollment response) improves over time. This
scenario can be applied straightforwardly in a PUF-based key
generator which perfectly regenerates the enrollment response.

3) Partial Correction Anti-Aging: PART_AA (zz%)
Scenario: Using error-correction techniques, the initial en-
rollment power-up state is partially reconstructed from a
(noisy) reconstruction measurement, i.e. a certain fraction
(xx% = 0% ...100%) of the bit errors in the reconstruction
measurement is corrected. The long-term anti-aging data is the
inverse of this partially corrected enrollment state.
Motivation: This is a variant of FULL_AA which describes
the scenarios where for particular reasons the enrollment
response is not perfectly reconstructed. For certain PUF-based
applications it is often not required, inconvenient or impossible
to perfectly reconstruct the SRAM enrollment power-up state,
e.g. when the PUF response is used as a noisy identifier.

These first three scenarios (NO_AA, FULL_AA,
PART_AA) are conceptually visualized in Fig. 2.

Enroll ..% OF ERRORS ~ 100% OF ERRORS (Perfect)
nrollment CORRECTED CORRECTED Reconstruction

e

NO_AA PART_AA FULL_AA

Fig. 2: Visualization of NO_AA, FULL_AA, and PART_AA.

4) Multiple Correction Anti-Aging: MULT_AA
Scenario: Using error-correction, one out of a set of initial
enrollment SRAM power-up states is perfectly reconstructed
from a reconstruction measurement. The long-term anti-aging
data is the inverse of the selected enrollment state.
Motivation: This scenario arises when the same SRAM is
enrolled as a PUF more than once, e.g. to derive a different
PUF-based key for different users, applications, etc. Under
normal circumstances, the different recorded enrollment states
differ only due to noise on the PUF response bits.

5) Random Anti-Aging: RAND_AA
Scenario: The long-term anti-aging data is a random bit string.
We differentiate between RAND_AA(fix) which uses a fixed
random string after each reconstruction on each PUF instance,
and RAND_AA(true) which uses a different randomly gen-
erated string after every reconstruction on every device.
Motivation: This is an (anti-)aging strategy that is independent
of the power-up state. It avoids potential attack on security-
sensitive data by erasing all PUF response information after it
is used. Also it does not require error-correction.



6) Structured Anti-Aging: STRUCT_AA
Scenario: The long-term anti-aging data is a structured bit
string, i.e. the anti-aging value of an SRAM cell is a deter-
ministic function of the cell’s memory address. The examples
of specific data structures that we consider are:

1) STRUCT_AA(zero)/STRUCT_AA(one): store zeros or
ones in every bit location of the SRAM matrix.

2) STRUCT_AA(row): alternately store zeros and ones in
consecutive rows of the SRAM matrix.

3) STRUCT_AA(checker): store a checkerboard pattern
of zeros and ones in the SRAM matrix.

Motivation: Equal to RAND_AA, without the requirement
for access to an embedded seeded PRNG or TRNG.

7) Dynamic Anti-Aging: DYN_AA
Scenario: After reconstruction, dynamically and con-
stantly write data to the SRAM. We differentiate between
DYN_AA(rand) which continuously writes randomly gen-
erated data, and DYN_AA(fix) which continuously cycles
between a number of fixed patterns.
Motivation: This scenario arises when the SRAM used as a
PUEF, is also used for different purposes after key reconstruc-
tion, e.g. as an instruction or data memory. This scenario also
captures a possible alternative (anti-)aging scenario which is
independent of the power-up state.

C. Test Setup

As detailed in Sect. II, the major aging mechanism causing
SRAM PUF reliability to change over time is NBTIL. The
effects of NBTI aging on a silicon device are considerably
accelerated when the device is operated at increased tem-
perature and/or supply voltage with respect to its nominal
conditions [10]. The amount of acceleration is captured by
an acceleration factor (AF) which depends on the acceler-
ated aging conditions. For NBTI aging, AF is calculated as
follows [10, Sect. 5.3]:
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The used model parameters for NBTI accelerated aging are

the following: the gate voltage exponent o = 3.5; the
time exponent n = 0.25; the apparent activation energy
E,, = —0.02¢V; and Boltzmann’s constant k = 8.62 X

10~%eV /K. The nominal and stressed aging conditions we
consider in our accelerated aging experiment are as follows:
(Tnominah Vnominal) = (4()00; 12V) and (Tstressa ‘/stress) =
(85°C,1.44V). The resulting NBTI acceleration factor under
these conditions becomes AF = 18.6, i.e. one hour of
accelerated aging amounts to 18.6 hours of effective NBTI
device aging under nominal conditions (assuming that AF' is
constant over time).

We applied this accelerated aging experiment on five 65nm
CMOS test ICs each implementing four SRAM PUFs of
size 8.0KByte. Prior to starting the aging experiment, several
measurements on each of these 20 PUFs have been performed
at 25°C ambient temperature and 1.2V supply voltage. These
measurements represent the PUFs’ initial states after zero

weeks of aging. After these measurements, the temperature
and voltage were increased to their stress levels. Once every
week during the experiment the PUFs are remeasured at 25°C'
and 1.2V respectively to acquire a data set at nominal con-
ditions for every week of accelerated aging. This accelerated
aging experiment has run for 2856 consecutive hours.With an
(assumed constant) acceleration factor of 18.6 this amounts to
an effective NBTI aging of more than 6 years.

To evaluate the effect of the different (anti)-aging scenarios
described in Sect. III-B, every SRAM PUF in the experiment
is divided in 16 equal sections of size 0.5KByte each imple-
menting one of the scenarios. Every SRAM PUF is repowered,
and hence re-evaluated, every six hours during the experiment
to emulate a realistic usage, followed by the data actions
prescribed by the different scenarios for each SRAM section.
For most scenarios this means that the SRAM section is
written with the scenario’s data which remains in the memory
for the next six hours of aging. For the NO_AA section no
action is taken and the power-up data after every re-power is
untouched. Special scenarios are MULT_AA for which a new
inverse enrollment pattern is written every 80 minutes, and
the dynamic scenarios DYN_AA(rand) and DYN_AA(fix)
which are continuously overwritten. In Table I (which also
already summarizes the results of these tests) an overview of
the 16 sections and their respective (anti-)aging scenarios is
presented. By evaluating the aging behavior of each of these
sections individually, it is possible to analyze which scenarios
are suitable for dealing with specific circumstances.

TABLE I: Considered (anti-)aging scenarios in our accelerated
aging experiment, and the corresponding summarized results.
+ : quality measure is stable or improves (++ is best scenario)
— : quality measure degrades (—— is worst scenario).

. Written  Intra- Inter- Hamming
# Scenario . . .
every... distance distance weight

1 NO_AA / — + +
2 FULL_AA 6 h ++ + +
3  PART_AA(10%) 6 h - + +
4 PART_AA(30%) 6 h - + +
5 PART_AA(60%) 6 h + + +
6 PART_AA80%) 6 h + + +
7 PART_AA(90%) 6 h + + +
8 MULT_AA 80 min + + +
9 RAND_AA(true) 6 h - + +
10 RAND_AA(fix) 6 h - - +
11 STRUCT_AA(zero) 6 h - - —
12 STRUCT_AA(one) 6 h - —— -
13 STRUCT_AA(row) 6 h - - +
14 STRUCT_AA(checker) 6 h - - +
15 DYN_AA(rand) cont. - + +
16 DYN_AA(fix) cont. - + +

D. Test Results

During the accelerated aging period the distributions of the
PUF quality measures from Sect. II-A have been monitored:
intra-distance (to evaluate reliability), inter-distance (unique-
ness), and Hamming weight (unpredictability). The main focus
is on intra-distance and the ultimate goal is finding anti-aging
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Fig. 3: Impact on SRAM PUF quality measures during the accelerated aging test. The top graphs show the evolution of these
measures during aging, while the bottom bar plots show their total relative change since the start of the experiment.

strategies which stabilize or even improve an SRAM PUF’s
reliability over time. However, the other two quality measures
are also monitored to assure that any gain in reliability does
not come at the expense of the PUF’s uniqueness or unpre-
dictability. A degradation of these parameters could cause a
security risk since the PUF responses become less random.

An ideal anti-aging strategy prevents the mean intra-distance
from increasing, but should also prevent the inter-distance
and Hamming weight from moving away from 50%. For the
tested SRAM PUFs, both the initial average inter-distance and
Hamming weight are already very close to 50%, so they should
preferably stay constant over time since any significant change
(increase or decrease) makes them less ideal.

Using the output data of the experiment, a distribution of
results from the 20 SRAMs has been compiled for each of
the three PUF quality measures and for every week of aging
elapsed in the experiment. The mean values (u) of these dis-
tributions are calculated for each of the (anti-)aging scenarios.
The evolution of these p’s for the different quality measures
and aging scenarios for the duration of the experiment is
presented in Figures 3a-3c !, with colors indicating whether a
quality measure is deteriorating over time (red) or not (green).
The overall shift of the mean values for each of the quality
measures during the total duration of the experiment is shown
in Figures 3d-3f. A qualitative summary is to be found in
Table I. The most important findings from these results and
their consequences will be discussed in the next section.

IThese graphs show a slowing down of most (anti-)aging effects on the
SRAM PUF toward the end of the accelerated aging experiment which could
be an indication that the accelaration factor AF' as determined in Sect. III-C
is not constant but slowly decreasing over time.

IV. DISCUSSION

The experimental aging results presented in Table I and
Figure 3 clearly show that for reliability, the NO_AA sce-
nario exhibits the worst-case evolution displaying the largest
increase in intra-distance over time. FULL_AA on the other
hand shows the best-case evolution with an intra-distance
which even decreases over time. These experimental obser-
vations are completely in line with the hypothesized physical
effects of NBTI aging for SRAM cells as detailed in Sect. II-C.
We consider these two cases as references for assessing the
performance of the other tested (anti-)aging scenarios.

1) Ideal scenario: Besides improving reliability over time
by up to 0.35%, FULL_AA also has no negative effect on
inter-distance and Hamming weight since it keeps them stable?
at their already ideal values very close to 50%. In this respect,
FULL_AA is to be considered as the ideal anti-aging strategy
for SRAM PUFs and it is highly recommended to apply
it whenever possible since it significantly relaxes the error-
correction requirements of the PUF-based system. However,
depending on the application and implementation constraints,
the FULL_AA scenario is not always possible, e.g. because:

« a perfect error-free reconstruction of the enrollment data
is not available;

it is required that all (security-sensitive) PUF response
data is completely erased after use, this rules out using
its inverse as anti-aging data;

the SRAM is not solely dedicated to the SRAM PUF, but
is used for other purposes afterward;

2We consider very small changes of less than 0.10% as being stable since
they are not statistically significant.



« the SRAM PUF is enrolled multiple times and there is
no single ideal enrollment data pattern.

These constraints have led us to investigate the (anti-)aging
effects of other data scenarios, which we discuss next.

2) No/partial error-correction: When a perfect reconstruc-
tion of the enrollment data is not possible, the preferable
scenario becomes PART_AA. Depending on the amount of
achievable error-correction, the effect on reliability varies (the
more error-correction, the better the effect on reliability). The
results show that with a limited error-correction of 30% or
lower, the reliability will slowly degrade over time. However,
the deterioration is very small and significantly less than
for NO_AA. With more error-correction the reliability will
improve over time, as the results for 60% correction and higher
show. Similar to FULL_AA the inter-distance and Hamming
weight remain stable.

3) PUF zeroization: In case all security-sensitive PUF
response information needs to be deleted from the SRAM,
the best performing scenario is RAND_AA(true). Although
reliability degrades over time, it is still the most reliable
scenario in which the data stored in SRAM is not based
on the PUF response. The increase in intra-distance is also
still considerably smaller than for NO_AA. The inter-distance
and Hamming weight remain stable in this scenario. An
important remark here is that the “obvious” option of really
zeroizing the SRAM, i.e. overwriting it with all zeros (or
ones), is a particularly bad choice since it not only degrades
the reliability worse than all other options (besides NO_AA),
it also has a significant negative impact on both inter-distance
and Hamming weight. In fact, due to their negative effect on
both intra- and inter-distance, none of the structured scenarios
(STRUCT_AAC(...) as well as RAND_AA(fix)) are recom-
mendable, and one should even take care to avoid them in
in-the-field situations.

4) Non-dedicated SRAM: When the SRAM is used for
other purposes besides the SRAM PUF, the DYN_AA scenar-
ios come into play. In these scenarios the reliability decreases
over time, which is as expected because the data in the
SRAM is not related to the PUF data. However, the reliability
is still significantly better than for NO_AA, and when the
dynamically written data to the SRAM is sufficiently random
it will not deteriorate the inter-distance and Hamming weight.

5) Multiple-enrolled PUF: The MULT_AA scenario ap-
plies to SRAM PUFs which are enrolled more than once. The
performance on all three quality measures is very good and
comparable to that of FULL_AA and PART_AA with high
error-correcting capabilities. MULT_AA exhibits an improve-
ment in reliability and hence anti-ages the SRAM PUF.

V. CONCLUSION

We investigated the effects of silicon aging (NBTI) on
SRAM PUF reliability. The physics behind NBTI predicts
that SRAM PUFs have a natural tendency to become less
reliable over time, but also reveals a potential solution which
could even anti-age SRAM PUFs using the appropriate data-
dependent actions. These cases, as well as a number of

other relevant scenarios were tested in an accelerated aging
experiment on a set of SRAM PUFs implemented on 65nm
CMOS ICs. The test results confirm the predictions and
identify an ideal anti-aging strategy which causes the tested
PUFs to become 0.35% more reliable over an aging period of
more than 6 years, without degrading the other PUF quality
measures. This full anti-aging strategy even improves SRAM
PUF reliability up to 2.45% compared to the natural reliability
degradation over the same period when no actions are taken.
Even when the full anti-aging scenario is not applicable, there
are still strategies which are significantly better than doing
nothing. A major practical advantage of the proposed anti-
aging solutions is that they do not require any circuit changes
or pre-deployment effort. They are hence usable for standard
SRAM implementations in a regular development flow.

A noteworthy side observation of independent interest is
that SRAM PUF zeroization (for security reasons) with a
fixed pattern (e.g. all zeros) is particularly detrimental for
each of the PUF’s quality measures, and therefore highly
discouraged. Overwriting the PUF response with on-the-fly
randomly generated data is preferable instead.
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Abstract Physical(ly) Unclonable Functions (PUFS)
have become a promising security building block for
many cryptographic applications over the last decade.
The stable portion of a PUF measurement can be uti-
lized by cryptographic protocols in order to store secret
keys and to attest the configuration of a remote device.
In contrast, the noisy portion of a PUF measurement
allows for generating random numbers. Provision for
the implementation of PUF features has to be made at
circuit level. Therefore, components that feature PUF
behavior have to be either included in the hardware de-
sign, as in the case of ASICs, or can be implemented
after manufacturing using FPGAs. In contrast, intrinsic
PUPFs are built out of components that already exist in
hardware modules. For example, most commercial com-
modity hardware contain Static Random-Access Mem-
ory (SRAM) modules, which can potentially be used to
implement intrinsic PUF instances. Consequently, the
characteristics of embedded SRAM modules have to be
thoroughly assessed before such intrinsic PUFs can be
employed in security-related applications. In this paper
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we evaluate the on-board SRAM modules contained in a
broad range of commercial off-the-shelf (COTS) devices
regarding their quality as PUFs and sources of entropy.
In particular, we perform measurements on popular mi-
croprocessors featuring ARM-, Atmel- and PIC-based
architectures in order to analyze the on-chip SRAM
with regard to the quality metrics of robustness, ran-
domness and entropy. Our evaluation shows that most
of the tested modules are suitable for PUF usage and
as a source of entropy.

Keywords Physically Unclonable Functions - Identifi-
cation - Authentification - Random Number Generation

1 Introduction

Physical(ly) Unclonable Functions (PUFs) have become
a promising security building block for many crypto-
graphic applications over the last decade. For example,
PUFs can be used to identify silicon chips on the ba-
sis of their physical structure [10], which is assumed
to be unclonable by both the manufacturer and any
other party. Their characteristics make PUFs appeal-
ing for use in conjunction with cryptographic applica-
tions. Besides for identification and authentication pur-
poses, PUFs were proposed to be used as a secure key-
storage solution [9], since a key generated out of a PUF
only persists in memory while the device is powered
on. PUFs can also be used as building blocks in cryp-
tographic primitives or to bind hardware and software.

PUF responses consist of a stable part, which can be
used as unique fingerprints, as well as an unstable part,
which induces noise to the PUF measurements. This
unstable part of a PUF measurement can not be used
for identification or key generation purposes. However,
as this noise is based on fluctuating physical ambient
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conditions it can be used to generate true random num-
bers, which are regarded as hard to produce in software.

In literature, most studied PUF instances are cus-
tom hardware components that have to be created as
part of an ASIC or that have to be implemented in an
FPGA. However, some SRAM modules present in com-
mercial off-the-shelf (COTS) devices exhibit good PUF
behavior, even though such modules were generally not
designed for the purpose of using them as PUFs [17].
Given that SRAM modules can be found in almost ev-
ery COTS device, this PUF behavior can be found in
many devices on the market. Using COTS devices for
PUF use is a worthwhile idea as it allows for lightweight
cryptographic solutions, especially for devices with con-
strained resources. Such devices often cannot be equip-
ped with additional cryptographic hardware modules
due to hardware or economic limitations. Utilizing in-
trinsic PUFs typically only requires changes to software,
making them easy to be applied to already deployed de-
vices.

In this work, we empirically assess the PUF charac-
teristics of SRAM present in a broad range of popular
COTS devices which were not designed for PUF use
during production. We analyze intrinsic PUFs for ro-
bustness, uniqueness and noise entropy.

To the best of our knowledge, this work is the first
one which qualifies and discusses such a large number of
COTS devices with regards to their usability in PUF-
related applications.

2 PUFs and PUF Applications
2.1 Physically Unclonable Functions

PUFs are complex physical structures that generate
a value in response to a stimulus. The class of sili-
con PUFs (e.g., static random-access memory PUFs) is
based on manufacturing variabilities and can be found
in certain integrated circuits. Silicon PUFs can be grou-
ped into delay- and memory-based PUFs. For an ex-
haustive overview of PUFs and details on their taxon-
omy we refer to [13].

It has been shown that the content of SRAM af-
ter power up shows PUF-like behavior [10]. Further re-
search in this area supports the applicability of SRAM
as a PUF [12]. Using SRAM modules as PUFs exploits
manufacturing variations, which manifest themselves
as a bias of memory cells inside the SRAM modules.
SRAM cells are designed as cross-coupled inverters that
exhibit a bi-stable behavior. As a result of the manufac-
turing variations, one inverter is more dominant than
the other in most of the individual cells. When powered
on, these cells eventually perform a transition from the

meta-stable state to a stable state, leading to bit values
of either one or zero. It was shown by Guajardo et al.
[9] that most memory cells are biased either towards
zero or towards one after start-up. These cells allow
for the generation of a fingerprint, which is unique for
individual devices.

2.2 PUFs as instances of hardware fingerprints

Besides uniquely identifying hardware, PUFs can be
used in combination with a Fuzzy Extractor, which
eliminates noise from PUF responses, to realize secure
key storage. In this case, SRAM start-up values are used
to reconstruct a predefined cryptographic key with sup-
port of so-called helper data. This scenario is comprised
of two phases: i) the enrollment; and ) the reconstruc-
tion phase. During the enrollment phase helper data is
produced from an enrollment PUF measurement and a
predefined secret. The helper data is necessary to re-
liably reconstruct the same secret from several noisy
measurements of a single device during the reconstruc-
tion phase. Secure key storage based on SRAM PUFs
allows for the implementation of several security-related
applications. A popular use case with respect to in-
trinsic SRAM PUFs is to use the reconstructed cryp-
tographic key to decrypt the firmware or parts of the
bootloader in order to bind a given software instance
to a specific device [17].

To reliably identify a device respectively reconstruct
a key, the noise of SRAM measurements should not
exceed a certain threshold. Furthermore, to guarantee
the uniqueness of the SRAM start-up values and thus
the derived key, the SRAM measurements also need to
be sufficiently different across different device instances.
A detailed explanation as well as an evaluation of these
characteristics is presented in Section 4.1.

2.3 Random number generation

To generate random numbers for cryptographic applica-
tions, two basic methods can be used. The first method
requires a physical source which is truly random and
whose output can be directly used to construct random
bits. Such non-deterministic sources derive their ran-
domness from underlying physical properties that ex-
hibit unpredictable behavior. Examples of such sources
of randomness in chips are free running oscillators con-
nected to a shift register [16] and noise on the lowest
bits of AD converters [14], but many more exist. These
Random Number Generators (RNGs) are referred to
as True Random Number Generators (TRNGs). There
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are two important downsides to most of these phys-
ical RNG constructions. Firstly, they require specific
hardware to extract the randomness from the physical
entities on the device. Secondly, the throughput of such
RNGs is often too low for cryptographic applications,
where large streams of random bits are required.

The second approach to generate randomness is by
using pseudo-RNGs (PRNGs), which are constructed
using deterministic algorithms. The output of such a
generator only seems to be random to observers who do
not have any knowledge of the initial state of the gener-
ator. If an observer knows, which data has been used as
a seed for the PRNG, he is able to calculate all output
values of the generator due to its deterministic nature.
Hence, the seed value should be chosen randomly and
kept secret. One advantage of PRNGs is that they can
be implemented completely in software and therefore do
not require any additional hardware. Moreover, PRNGs
are able to produce streams of (pseudo-)random bits at
a sufficient output rate for cryptographic applications.

The noise present in PUF responses can be used
to derive truly random seeds for a PRNG. The basic
idea of using noisy SRAM start-up states as a source
for PRNG seeds was investigated in [10], as well as
in [11]. The former paper proposes to use a universal
hash to generate a single random number at start-up.
The authors verify their approach by using an exter-
nal SRAM module. However, they do not investigate
whether their approach is feasible on embedded SRAM,
which is integral to most COTS microcontrollers. In the
latter paper, the feasibility of creating a strong PRNG
with the use of random data from an ASIC containing
SRAM-based Physically Unclonable Functions (PUFs)
is investigated. Van Herrewege et al. [18] propose to
exploit the intrinsic noise entropy of SRAM measure-
ments right after power up and post-process them in
order to extract a seed that is subsequently used as an
input for a PRNG. The construction collects entropy
in the SRAM start-up values to produce a secure seed
for a hash function, which then provides a continuous
stream of pseudo-random numbers.

In order to use SRAM start-up values as a reliable
basis for PRNGS, they must provide enough entropy.
The noise entropy is evaluated in Section 4.2.

2.4 Metrics for Identification and Entropy Extraction

Metrics for Identification. For identification purposes a
PUPF instance should show properties that mitigate the
prediction of start-up values (partially reflected by the
Hamming weight), enable a robust repeated identifica-
tion of single devices (within-class Hamming distance)

and lastly generate a unique pattern among a pool of
similar devices (between-class Hamming distance).

The Hamming weight (HW) of individual measure-
ments from the same device indicates whether the start-
up values are biased to zero or one. This metric gives
a first impression about the randomness present in the
start-up values. The ideal Hamming weight follows a
Gaussian distribution with a mean of 50%, represent-
ing no bias of the start-up values towards zero or one.

The Within-class Hamming distance (WCHD) gives
an indication whether the PUF results for a single de-
vice are stable when queried repeatedly. Robustness
of the start-up values is required to reliably identify
a given device and subsequently reconstruct the cor-
responding cryptographic key. WCHD is a normalized
count of bits which differ between subsequent PUF mea-
surements and thus is a rational number between zero
and one. An optimal value for the within-class Ham-
ming distance is close to zero. However, all start-up
values show a certain amount of noise, which originates
from SRAM cells that flip their start-up value over mul-
tiple trials.

The between-class Hamming distance (BCHD) ex-
presses whether the start-up values of different devices
are independent. This metric states whether start-up
values can be used for identification without enabling
adversaries to predict a measurement for a second de-
vice on the basis of measurements of a first device. In
the optimal case, the between-class Hamming distance
follows a Gaussian distribution with mean 50%. If this
is true, then the start-up values are most likely inde-
pendent. Devices with an optimal value of 50% exhibit
a maximum distinguishability regarding their PUF re-
sponses.

Metrics of Entropy. For the purpose of extracting ran-
dom seeds from SRAM start-up values, it is impor-
tant to investigate their entropy content. In this pa-
per, we use the min-entropy to quantify the entropy
of the SRAM patterns [11]. This method is based on
the NIST specification [7] that defines min-entropy as
the worst-case (i.e., the greatest lower bound) metric of
uncertainty for a random variable.
For a binary source, we define the min-entropy as

H’rnin = _1Og2(max(p07p1))a (1)

where pg and p; are the probabilities of an occurence
of 0 or 1. Assuming that all bits from the start-up pat-
tern are independent, each bit 7 is an individual binary
source. For each of these sources we estimate the prob-
abilities pj and p} of powering up in state 0 or 1, by re-
peatedly measuring the power-up values of the SRAM.
In case m subsequent measurements are performed, pf,
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denotes the number of occurrences of a zero, divided by
m and p{ = 1 — p}. For a start-up pattern of length n
we have

Huo =Y -

i=1

log, (max vapl))) (2)

Hence, under the assumption that all bits are indepen-
dent, we can sum the entropy of each individual bit to
derive the min-entropy of the entire SRAM.

Fractional Metrics. All metrics in this work are pre-
sented as fractional values in order to improve compa-
rability between various devices. E.g. a fractional min-
entropy of 6.0% of a 8 KiB memory is approximately
equal to 491.5 bytes of min-entropy.

3 Experimental Setup
3.1 Measured devices

In this section, we present the devices and microcon-
trollers for which we analyze the start-up patterns of
their embedded SRAM. As a basis for our investigation,
we selected popular commercial devices ranging from
light-weight microcontrollers to more complex system-
on-a-chip platforms. Our test bed comprises chips from
Atmel, Microchip, STMicroelectronics, and Texas In-
struments. We selected widely-used microcontrollers,
representing industry standards in their respective class
of 8-, 16- and 32-bit processors. For all device types, the
investigated SRAM instances are on-chip, i.e. we do not
test external SRAM modules. Table 1 gives an overview
of the tested device types as well as details on important
hardware aspects.

PIC16F1825: The PIC16F1825 [4] is an 8-bit low-po-
wer microprocessor developed by Microchip. The mi-
croprocessor holds 1 KiB of static RAM, 8 KiB of flash
memory and 256 bytes of EEPROM. The microcon-
troller was specifically designed to be used in medical
devices, in automotive scenarios or as part of home ap-
pliances.

ATmega328P: The ATmega328P [1] is a low-power 8-
bit processor produced by Atmel as part of the mega-
AVR series. It has 2 KiB of static RAM, 32 KiB of flash
and 1 KiB EEPROM on board. The ATmega328P was
designed for applications in highly competitive markets
where production costs have to be very low.

MSP430F5308: The MSP430F5308 [2] is a low-energy
16-bit processor produced by Texas Instruments. The
device holds 6 KiB of static RAM and 16 KiB of flash
memory. It is optimized for low current drain and thus
is used in battery-backed devices for energy constrained
applications which require a long service life.

STM32z: The STM32F100Rx series [5] is a 32-bit mi-
croprocessor equipped with an ARM Cortex-M3 CPU.
We investigated two models of this device: ) the STM-
32VL-Discovery evaluation board, which contains an
STM32F100RB microprocessor; and i) the STM32-
F100R8 microprocessor. Both versions hold 8 KiB static
RAM and respectively 64 KiB flash memory (STM32-
F100R8) and 128 KiB flash memory (STM32F100RB).
The evaluation board additionally provides several pe-
ripherals and a debugging interface. The STM32F100
series was developed with focus on industrial-control
applications. The embedded Cortex-M3 is a low-power
microcontroller used in power sensitive and high per-
formance applications.

LM/F120H5QR: The LM4F120H5QR is a 32-bit ARM
Cortex-M4F microcontroller with 32 KiB SRAM, 256
KiB flash memory and several programmable interfaces.
For our measurements we use the Texas Instruments
EK-LM4F120XL development board [6], which is based
on this microprocessor. It was developed for a variety
of industrial applications ranging from electronic point-
of-sale machines, and network appliances to factory au-
tomation. The Cortex-M4F is conceptually equivalent
to the Cortex-M3 but additionally supports instruc-
tions for digital signal processing and features a floating
point unit.

PandaBoard: The PandaBoard is based on an OMAP4
system-on-a-chip (SoC) platform [3]. It integrates two
ARM Cortex-A9 processors as well as two Cortex-M3
co-processors for signal processing. The PandaBoard is
based on a Texas Instruments OMAP4430 SoC run-
ning at 1.0 GHz, the PandaBoard ES is based on an
OMAP4460 running at 1.2 GHz. The platforms also
come equipped with 1 GiB of external DDR2 SDRAM.
The dual-core Cortex-A9 is a high-performance appli-
cation processor for low power or cost sensitive de-
vices. With the PandaBoard’s variety of interfaces —
including USB, HDMI, DVI-D, ethernet, and WiFi —
is mainly used as a development platform for modern
smartphones and tablets.
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3.2 Measurement setup

In this subsection, we present the soft- and hardware
setup used to evaluate COTS microcontrollers for their
PUF characteristics, based on the work presented in
[18]. First, we present the functionality and require-
ments of firmware that is loaded onto each microcon-
troller in order to extract the start-up values. There-
after, we describe the hardware setup used to automat-
ically perform measurements on several devices.

3.2.1 Firmware design

In order to extract the raw SRAM start-up values we
developed a custom firmware, which performs the fol-
lowing steps on power-up:

1. Initialize the serial port (UART).
2. Transmit every SRAM byte over the UART.
3. Idle the device.

While designing the firmware we had to take into
account the important constraint that, if possible, no
SRAM should be used while executing the commands to
complete the steps described above. The reason for this
is that any writes to SRAM remove parts of the start-
up value. This requirement is easily met on most mi-
crocontrollers which possess several working registers,
such that we could, e.g., store a pointer to an SRAM
byte. However, some microcontrollers, such as those of
the Microchip PIC16 family, only have a single working
register and therefore we need to store variables in un-
used configuration registers to avoid writes to SRAM.

3.2.2 Hardware setup

In order to obtain an initial set of SRAM start-up val-
ues, we performed the measurement of SRAM start-up
patterns a few times by hand. For this purpose we con-
nected the power lines and the serial port of the device
under test to an external serial TTL-to-USB converter.
The converter, in turn, was attached to a self-powered
USB hub. After receiving all start-up values we removed
the lines for the power supply for at least 10 seconds in
order to ensure a fresh SRAM pattern for the next start.
We observed that this cycle delivered reasonable values
for all device types, except for the PIC16F1825. The
SRAM patterns in these devices persisted for over 10
minutes after the power lines had been disconnected.
In order to extract start-up patterns faster and more
efficiently, we used two custom measurement boards.
The boards can simultaneously connect multiple mi-
crocontrollers. They turn on every connected device,

receive the respective SRAM start-up patterns and for-
ward them to the desktop PC, turn of the microcon-
troller and idle to give the respective microcontroller’s
SRAM a chance to discharge. This procedure is re-
peated automatically. For a detailed explanation of the
the custom controller boards, we refer to [18].

4 Evaluation

In this section we present the results of analysis of the
SRAM start-up values of different device types with re-
spect to the metrics introduced in Section 2.4. We first
deal with metrics concerning robustness and unique-
ness. Subsequently, we go into detail with respect to
noise entropy. All devices have been tested at room tem-
peratures of approximately 20°C. For specific devices,
we also conducted measurements in a climate cham-
ber at different extreme temperatures: —30 °C, 20 °C
and 8590 °C. Not all devices were exposed to tem-
peratures tests because some device types hold compo-
nents, which would get corrupted at extreme temper-
atures. For example, the the PandaBoard includes an
LCD display and other hardware elements which would
be destroyed if exposed to extreme temperatures. An
overview of the measurement conditions, including the
number of devices for each device type as well as the
number of measurements performed at respective am-
bient temperatures can be found in Table 1. For all
devices, the first measurement at room temperature
has been used for enrollment. All other measurements
are compared to the enrollment measurement. The odd
numbers of measurements are due to the fact that dur-
ing the evaluation some measurement errors occurred,
which have been removed from the data set before anal-
ysis.

Metrics are plotted as whisker plots, which are con-
structed as follows: the central line of each box shows
the median value, whereas the bottom and top of the
box show respectively the 1* and 3'¢ quartile. The two
whiskers extending from the box show respectively the
27 and 98" percentile. Finally, we plot the minimum
and maximum value with a x symbol.

4.1 Evaluation of uniqueness and robustness
Hamming Weight

In the following section we will present the results of
the Hamming weight (HW) characteristics of the mea-
sured devices. Exemplary, Figure 1 shows average Ham-
ming weight results for the individual STM32F100R8
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Table 1 Details of devices analyzed for PUF characteristics of on-chip SRAM start-up values.

Device Type Processor Type Manufacturer SRAM stze Device Measurements per device
[KiB] count 20 °C  —30°C 90 °C
ATmega328P AVR Atmel 2 16 9695 2916 2989
PIC16F1825 PIC16 Microchip 1 16 3700 3662 3671
MSP430F5308 MSP430 Texas Instruments 6 15 3174 3339 3359
STM32F100R8 ARM Cortex-M3 STMicroelectronics 8 11 3419 7745 9003
STM32F100RB ARM Cortex-M3 STMicroelectronics 8 14 1069 — —
LM4F120H5QR ARM Cortex-M4F Texas Instruments 30 15 1000 — —
PandaBoard (ES) ARM Cortex-A9/M3  Texas Instruments 12 6 1000 — —
—30 20 85 43.29%?!. This reveals that there is a certain correlation
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Fig. 1 Comparison of average Hamming weights for the in-
dividual STM32F100R8 devices.

microcontrollers that exhibit almost perfect HW char-
acteristics. For each individual microcontroller corre-
sponding whisker boxes display the HW measurements
for three ambient temperatures. All the values gather
nicely close to the optimal value of 50% with almost no
differences among the different temperature measure-
ments, showing almost perfect HW characteristics for
this device type. Moreover, Figure 2 compares the av-
erage HW per device type. Several device types exhibit
start-up values with good or reasonable properties. The
ATmega328P and the MSP430F5308 show undesired
results at any temperature. Other devices show highly
varying HW values, e.g. the LM/F120H5QR as well as
the PIC16F1825 or the PandaBoard.

The results for the PUF responses of the STM32-
F100RB, the STM32F100R8 and the PandaBoard in-
dicate properties that are close to the desired distri-
bution, indicating that the start-up values contain al-
most the same proportion of zeros and ones, although
the PandaBoard shows a notable high standard deriva-
tion. The HW for the LM/F120H5QR show reasonable
characteristics with a worst-case Hamming weight of

among the start-up values of different devices. Thus,
the required portion of SRAM to derive a unique fin-
gerprint increases. Another notable characteristic for
the LM4F120H5QR is the variance among the Ham-
ming weight values for the different devices. The maxi-
mum difference between Hamming weights of different
devices is around 11%. We could not find any reason
for this behavior. Also the spread of the HW for the
PIC16F1825 is rather large compared to the rest of
the devices. Again, the actual reason for this behavior
could not be identified.

The Hamming weight of the start-up values gener-
ated by the ATmega328P as well as by the MSP/30-
F5308 are significantly higher than 50% at any of the
tested temperatures. This indicates a higher portion of
ones than zeros in the PUF responses.

The PIC16F1825°s fractional Hamming weight is
close to 50%, which at first glance represents desired
characteristics. However, a visual examination of the
PUF responses reveal a repeating pattern, which will
be discussed in detail in Section 4.2.

In summary, the numbers for all devices suggest
that their SRAM start-up values are suitable inputs
for commonly known Fuzzy Extractors, even for those
devices with a HW that can not be regarded as opti-
mal. In the latter cases those characteristics will lead
to an increased PUF response size to reliably extract
an identifier by the Fuzzy Extractor algorithm. How-
ever, these requirements can be fulfilled at the cost of
using more SRAM. Detailed numbers of the average
Hamming weights can be seen in Table 2. The values
shown are the minimum and maximum values from the

1 The measurements of the LM4F120H5QR exhibit a series
of null bytes of approximate size of 2 KiB at the beginning of
the SRAM region. These null bytes influence the Hamming
weight of the devices towards zero. The exact reason for this
behavior is unclear. We assume that these null bytes were
introduced due to the usage of ROM code to initialize the
UART interface. Some ROM functions may allocate space,
which is never used and thus remain as a series of zeros. Thus,
we excluded the first 2 KiB from the analysis.
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Fig. 2 Comparison of average Hamming weights among de-

vice types.

Table 2 Fractional Hamming weight (HW) of investigated
devices under different thermal conditions.

HW [%] (min; max)

Device Type

20 °C —30 °C 85-90 °C
ATmega328P 64.44; 68.60 70.12; 76.18  58.38; 62.79
PIC16F1825 45.74; 51.50  43.18; 50.29  48.29; 51.54
MSP430F5308 60.04; 66.47 57.06; 67.62  58.60; 66.40
STM32F100R8 49.15; 49.84  49.08; 49.93  49.20; 49.72
STM32F100RB 49.44; 49.92 - -
LM4F120H5QR 43.29; 53.69 - -
PandaBoard (ES)  45.20; 50.94 - -

averaged HW results of each individual microcontroller
instance.

Within-class Hamming distance

The results of the averaged within-class Hamming
distances (WCHD) of the analyzed device types can be
seen in Figure 4. Since the WCHD refers to the noise
exhibited in the SRAM start-up values of a given de-
vice across multiple activation operations, it is desired
to have a WCHD as low as possible. The existing noise
needs to be eliminated using an error correcting scheme.
For this purpose, commonly a Fuzzy Extractor is used.
A reference Fuzzy Extractor design presented in [8] can
correct up to 15% noise. Thus, the besides the require-
ment of the WCHD to be as low as possible, it should
not exceed this threshold. For a more detailed reference
we present the averaged WCHD values for each individ-
ual STM32F100R8 microcontroller in Figure 3. Again,
measurements are represented using whisker boxes for
the individual devices at three different temperatures.

For a fixed temperature the WCHD values show al-
most no spread regarding their standard deviation. Al-
though, the WCHD values vary among different tem-
perature measurements, all WCHD values are below
the noise threshold, showing that PUF measurements
of this device type are robust also under extreme con-
ditions.

The maximum within-class Hamming distance at
room temperature for the PIC16F1825 and the AT-
mega828P is below 3%, indicating nearly perfect char-
acteristics such that noise can be easily corrected us-
ing commonly known Fuzzy Extractors. The WCHD
results for the MSP430F5308, the LM/F120H5QR and
the PandaBoard show good properties at room temper-
ature, whilst the STM32F100R8 as well as the STM352-
F100RB exhibit reasonable characteristics.

However, looking at the temperature measurements
of the ATmega328P, the PIC'16F1825 and the MSP430-
F5308 our observation is that at low temperatures the
SRAM start-up patterns exhibit a significant increase
of the WCHD values for all tested devices.

To summarize, the gathered WCHD values for all
the tested devices are well below the critical threshold
of 15% such that the exhibited noise can be correct us-
ing a common Fuzzy Extractors. However, looking at
the relative differences between room temperature and
extreme temperature of some device, it is obvious that
microcontrollers need to be tested thoroughly with re-
gard to ambient conditions if they are supposed to be
used in security-related applications. Detailed within-
class Hamming distance results can be found in Table
3. We list only the maximum recorded value here, since
that is what matters when selecting appropriate pa-
rameters for error correction algorithms (e.g. a Fuzzy
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Fig. 3 Comparison of average Within-class Hamming dis-
tances for the individual STM32F100R8 devices.
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Extractor). Again, the listed values are the maximum
results from the averaged WCHD values of each mea-
sured microcontroller instance.
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Fig. 4 Within-class Hamming distance for all measured de-
vice types.

Table 3 Maximum within-class Hamming distances (WC-
HD) of investigated devices under different thermal condi-
tions

) Max. WCHD [%)]
Device Type

20 °C —30°C 85-90 °C
ATmega328P 2.57 12.34 7.10
PIC16F1825 1.95 10.55 7.90
MSP430F5308 4.56 11.65 6.92
STM32F100R8 5.66 8.01 10.56
STM32F100RB 9.29 — —
LM4F120H5QR 5.25 — —
PandaBoard (ES)  4.25 — —

Between-class Hamming distance

Figure 5 compares the average between-class Ham-
ming distances (BCHD) to each other. Whilst some
device types exhibit near-perfect between-class Ham-
ming distances, e.g. the PandaBoard, this is not the
case for all measured devices. The PIC16F1825 is es-
pecially bad in this regard, having a maximum mea-
sured BCHD of only 24.54%, making it unsuitable for
unique identification. The BCHD of the PIC16F1825
is much lower than required for a PUF implementa-
tion. The PUF measurements fit a Gaussian distribu-
tion with a mean value of 21.29%. This low mean value

indicates that there is a very high correlation between
the PUF responses from different devices. This makes
them unsuitable to be used as part of cryptographic al-
gorithms. The origin of this low BCHD is a repetitive
pattern which appears in every measured PIC16F1825
device (see Section 4.2).

The PUF responses of the other device types exhibit
a between-class Hamming distance which is close to the
optimal 50%. They can be uniquely identified as the HD
between different devices is much higher than the noise
measured for each individual device (i.e. the WCHD).

Especially the BCHD of the LM/F120H5QR and
the PandaBoard are remarkable, since they are almost
exactly 50%. These numbers guarantee to provide a
unique fingerprint for individual devices among a pool
of devices of the same type.

An overview of average BCHD is given in Table 4.
Note that the measurements at extreme temperatures
are omitted as the BCHD values are computed on en-
rollment data. In the scenario of extracting a device
fingerprint the keys are derived at room temperature.
During reconstruction, the keys are merely recreated.
Thus, the uniqueness of the key — and subsequently
the SRAM start-up values — must be guaranteed at the
point of enrollment. Given that enrollment data was
measured at room temperature it is not useful to com-
pare it to measurements at other temperatures.

4.2 Evaluation of entropy

Figure 6 shows the average min-entropy results for the
tested devices. From the measurements it is clear that
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Fig. 5 Between-class Hamming distances for all measured
device types.
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the investigated device types behave differently. Whilst
most of the devices show good results when it comes to
deriving a truly random seed from the noise on SRAM
start-up patterns, the PIC16F1825 microcontrollers are
not appropriate for this purpose. Min-entropy values
of the noise are displayed for each measured STM32-
F100RS8 device in Figure 7.

ATmega328P  PICI6F1825 MSP430F5308 STM32F100RS STM32F100RB  LM4F120  PandaBoard
—r A A Y A A
12.5 |- -
X
7.5 |- n

Fractional within-class min-entropy [%)]

2.5 [ i.; @;; i
0 Y Y | | |
—30 90 —30 85 —30 90 —30 85 20 20 20
20 20 20 20

Temperature [°C]

Fig. 6 Comparison of average fractional min-entropy of the
noise exhibited among different device types.

In general, the behavior of the PIC16F1825 is pe-
culiar for several reasons. The PIC16F1825 enrollment
visualization shows an obvious repetitive pattern (see
Fig. 8b). To be more precise: the bits of every alternat-
ing byte have a preference to start-up either as a 0 or
a 1. This pattern is present in every PIC16F1825 de-
vice we measured. Furthermore, as seen in Fig. 6 the
standard deviation, for the min-entropy values of the
PIC16F1825 as well as of the MSP430F5308 is much
higher at —30 °C compared to the standard deviation
at the other two temperatures. Whereas for other ICs,
the min-entropy generally goes down at freezing tem-
peratures, for the PIC16F1825 it increases for some of

Table 4 Average between-class Hamming distances (BCHD)
of investigated devices at room temperature.

Device type BCHD [%]
ATmega328P 44.31
PIC16F1825 21.29
MSP430F5308 46.35
STM32F100R8 47.69
STM32F100RB 47.22
LM4F120H5QR 49.33
PandaBoard (ES) 49.94

the measured devices. The same behavior can be ob-
served for the MSP430F5308 to an even larger extent.
Whilst the standard deviation for the measurements at
room temperature and high ambient temperatures are
as expected, it dramatically increases when lowering the
ambient temperature. For these microprocessors, some
start-ups at lower temperature generate patterns simi-
lar to those at room temperature, while others are much
more different. Therefore, these particular devices have
a higher min-entropy, since their start-up pattern is
harder to guess. It thus seems that —30 °C is a temper-
ature at which expected behavior of the PIC16F1825 as
well as of the MSP430F5308 is not assured, since some
measured devices behave as expected, whereas others
clearly do not.

It is noteworthy that the min-entropy results for al-
most all tested device types are relatively stable under
different thermal conditions. All the device types except
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Fig. 7 Comparison of average fractional min-entropy of the
noise extracted from the individual STM32F100R8 microcon-
trollers.

Fig. 8 Example 1 KiB start-up patterns at 25 °C. Left:
STM32F100R8, right: PIC16F1825. White represents a bit
with value 0, black one with value 1.



O©CoO~NOOOITA~AWNPE

10

André Schaller et al.

for the PIC16F1825 show fairly good entropy results,
sufficient to extracting enough entropy for a strong seed
for a PRNG. For example, the STM32F100R8 devices
exhibit a minimum amount of 5.29% min-entropy in
every thermal test condition. Given the fact that the
measured SRAMs have a size of 8 KiB, it is evident
that one can extract a lot of entropy (e.g. using a cryp-
tographic hash) to generate a truly random seed for a
PRNG. Whilst most of the devices show good results
when it comes to deriving entropy from the noise on
SRAM start-up patterns, the PIC16F1825 microcon-
trollers are unfit for the purpose of extracting a truly
random seed from this noise. For the implementation
of a PRNG seeded with a random seed derived from
SRAM start-up noise, the PIC16F1825 should not be
used, since barely 128 bits of entropy can be gener-
ated from the start-up pattern of this microcontroller,
whereas one would want a certain safety margin above
this.

An overview of the minimum measured min-entropy
per device type is shown in Table 5. We list the min-
imum measured min-entropy, since this is the value to
take into account when determining how much SRAM
is required to generate a strong random seed.

Table 5 Minimum within-device min-entropy of investigated
devices under different temperatures.

Minimum min-entropy [%)]

Device Type

20 °C —30°C 85-90 °C
PIC16F1825 1.69 1.23 2.14
ATmega328P 2.65 2.25 3.17
MSP430F5308 4.95 4.63 5.87
STM32F100R8 6.55 5.29 6.31
STM32F100RB 10.98 — —
LM4F120H5QR 5.86 — —
PandaBoard (ES) 4.27 — —

4.3 Consequences relating to Applications

In summary, it should be asserted that for assessing the
applicability of SRAM start-up patterns for security-
related applications, in terms of their PUF as well as
entropy characteristics, it is required to consider all the
presented metrics. For example, regarding the PIC16-
F1825, solely taking the Hamming weights or the with-
in-class Hamming distances into account would not re-
veal the visible pattern, which is reflected in the micro-
controllers’ between-class Hamming distances. The bad
BCHD values disqualify the PIC16F1825 devices for
identification or entropy extraction purposes. Further-
more, it is necessary to test the metrics under different

ambient temperatures as the device behavior might be
significantly different to what was measured at room
temperature. This is supported by the large relative dif-
ferences of the within-class Hamming distances among
different temperatures of the PIC16F1825, ATmega-
328P as well as the MSP430F5308 devices. Except for
the PIC16F1825, all devices can be used as a PUF in-
stance and to extract entropy. However, considering the
bias in the start-up pattern of the ATmega328P and the
MSP430F5308 specific processing steps have to be per-
formed for identification purposes besides the common
Fuzzy Extractor. The rather high bias in the SRAM
start-up values of both devices decreases the entropy
and thus requires more SRAM data for key reconstruc-
tion. To make sure that a robust reconstruction on such
memory-constrained devices is possible, one could ap-
ply a de-biasing algorithm like the Von Neumann ex-
tractor [15] on the PUF measurement prior to enroll-
ment. Such an randomness extractor in combination
with a statistical analysis of the bias and the available
SRAM size and additional Helper Data allows for an
implementation of a PUF-based key reconstruction us-
ing biased SRAM values on memory-constrained de-
vices.

5 Conclusion

In this work we evaluated a broad range of commer-
cial off-the-shelf (COTS) devices with regard to their
SRAM start-up values being either used as an device
identifier or source of randomness. We introduced mea-
sures of two major groups of characteristics, namely
i) uniqueness and robustness; and i) noise entropy of
the start-up values. Furthermore, we evaluated the de-
vices with respect to these characteristics. We show that
many SRAM instances that can be found on COTS de-
vices can be successfully used to extract an identifier
for the device. This enables security-related applica-
tions and protocols, as for example secure key storage
or the implementation of security protocols based on
PUFs. In contrast to traditional approaches such solu-
tions are lightweight as they do not require additional
hardware to store cryptographic keys (e.g. TPM chips).
Furthermore we show that some SRAM modules con-
tain enough randomness to make them a worthwhile
source of entropy. Especially for low-end devices this is
a desirable application as on such devices it is rather
challenging to generate random numbers with high en-
tropy.

We show that many SRAM instances that can be
found on COTS devices can be successfully used to ex-
tract an identifier for the device. This enables security-
related applications and protocols, as for example se-
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cure key storage or the implementation of security pro-
tocols based on PUFs. In contrast to traditional ap-
proaches such solutions are lightweight as they do not
require additional hardware to store cryptographic keys
(e.g. TPM chips). Furthermore, our measurements show
that some SRAM modules contain enough randomness
to make them a worthwhile source of entropy. Espe-
cially for low-end devices this is a desirable application
as on such devices it is rather challenging to generate
random numbers with high entropy.

However, the evaluation of the PIC16F1825 in par-
ticular revealed repeating patterns in the SRAM start-
up values, which heavily decrease the uniqueness of the
microcontrollers. Furthermore, the analysis at extreme
temperatures reveals a dramatic decrease of noise en-
tropy, which makes this device type unsuitable for ran-
dom number generation. This demonstrates that it is
absolutely necessary to thoroughly assess the charac-
teristics of the SRAM modules before employing them
in security-related applications as some modules might
not hold the required quality criteria.
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